Quantitative Analysis to Support Full Extrapolation of Efficacy in Children for Partial Onset Seizures in Adjunctive Setting: FDA-PEACE Initiative

Shailly Mehrotra
Center for Translational Medicine, UMD; ORISE Fellow, FDA

Office of Clinical Pharmacology, FDA
Division of Neurology Products, FDA
Disclaimer

The views expressed in this presentation do not necessarily represent the policies of the Food and Drug Administration or the Department of Health and Human Services.
Evidence to Support “Full Extrapolation” of Efficacy
Disease Similarity Between Adults & Children

• PEACE/DNP provided the clinical expertise to describe:

 – the *pathophysiology* of partial onset seizures (POS)

• After excluding children under age 4 and those with POS associated with epileptic encephalopathies such as Lennox-Gastaut, the pathophysiology of POS is similar in children (≥ 4 year old) and adults.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Population</th>
<th>Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxcarbazepine (Trileptal)</td>
<td>≥ 2 year</td>
<td>Blocks voltage dependent Na channels, increase K conductance and modulate high voltage activated Ca channels</td>
</tr>
<tr>
<td>Levetiracetam (Keppra)</td>
<td>≥ 1 month</td>
<td>Acts by binding to SV2A protein. Inhibits voltage sensitive Na channels, stabilize neuronal membranes and modulates presynaptic release of excitatory neurotransmitter</td>
</tr>
<tr>
<td>Lamotrigine (Lamictal)</td>
<td>≥ 2 year</td>
<td>Inhibits voltage sensitive Na channels, stabilizes neuronal membranes and modulates presynaptic release of excitatory neurotransmitter. Blocks voltage dependent Na channels, augments GABA activity, antagonizes AMPA/Kainate subtype of glutamate receptor, inhibits carbonic anhydrase enzyme.</td>
</tr>
<tr>
<td>Topiramate (Topamax)</td>
<td>≥ 2 year</td>
<td>Blocks voltage dependent Na channels, augments GABA activity, antagonizes AMPA/Kainate subtype of glutamate receptor, inhibits carbonic anhydrase enzyme. Not known; binds with α2δ subunit of voltage activated calcium channel but therapeutic effects of binding are unknown.</td>
</tr>
<tr>
<td>Gabapentin (Neurontin)</td>
<td>≥ 3 years</td>
<td>Noncompetitive antagonist of AMPA glutamate receptor.</td>
</tr>
<tr>
<td>Perampanel (Fycompa)</td>
<td>≥12 year</td>
<td>Noncompetitive antagonist of AMPA glutamate receptor.</td>
</tr>
<tr>
<td>Tiagabine (Gabitril)</td>
<td>≥12 year</td>
<td>Not known, enhances the activity of GABA as an inhibitory neurotransmitter.</td>
</tr>
<tr>
<td>Vigabatrin (Sabril)</td>
<td>≥10 year</td>
<td>Not known, increases levels of GABA in CNS.</td>
</tr>
</tbody>
</table>
Trial Design and Primary Endpoint in Approval of AEDs in Adjunctive Setting

- **Baseline Phase**: 8-12 weeks, 1-3 Concomitant AEDs
- **Titration Phase**: 2-6 weeks
- **Double Blind (DB) Phase**: 3X mg
 - 2X mg
 - X mg
- **Placebo (PB)**
- **Maintenance Phase**: 12-24 weeks
- **Primary Endpoint**: Median %CFB in Seizure Frequency/28 days in the DB Phase
- **CFB**: Change from baseline

Plasma samples are collected in the maintenance phase
Evidence to Support “Full Extrapolation” of Efficacy
Observed Efficacy of Approved AEDs in Adults & Children from Registration Trials

<table>
<thead>
<tr>
<th>AED</th>
<th>Adult Dose</th>
<th>Children Dose</th>
<th>Placebo Corrected Median % CFB in Seizure Frequency/28 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxcarbazepine</td>
<td>1200 mg/day</td>
<td>2400 mg/day</td>
<td>-32.6, -42.3, -25.4</td>
</tr>
<tr>
<td>Children: 3-17 years of age</td>
<td>30 to 46 mg/kg/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perampanel</td>
<td>4 mg/day</td>
<td>8 mg/day</td>
<td>-13.1, -22.7, -14.9</td>
</tr>
<tr>
<td>Children: 12 years and above</td>
<td>12 mg/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levetiracetam</td>
<td>3000 mg/day</td>
<td>3000 mg/day</td>
<td>-32.7, -30.3, -28.0</td>
</tr>
<tr>
<td>Children: 4-16 years of age</td>
<td>60 mg/kg/day</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Labels for oxcarbazepine, perampanel and levetiracetam

M-CERSI-FDA WORKSHOP: QUANTITATIVE ASSESSMENT OF ASSUMPTIONS TO SUPPORT EXTRAPOLATION OF EFFICACY IN PEDIATRICS, 06/01/2016
Observed Efficacy of Approved AEDs in Adults & Children from Registration Trials

Placebo Corrected Median % CFB in Seizure Frequency/28 days

Topiramate
- Children: 2-16 years of age
 - 400 mg/day: -39.6%
 - 400 mg/day: -35.9%
 - 6 mg/kg/day: -22.6%

Lamotrigine
- Children: 2-16 years of age
 - 500 mg/day: -28.0%
 - 15 mg/kg/day (max = 750 mg): -29.0%

Gabapentin
- Adults: 12 years and above
- Children: 3-12 years of age
 - 1200 mg/day: -16.7%
 - 1200 mg/day: -14.0%
 - 1200 mg/day: -16.6%
 - 1800 mg/day: -25.9%
 - 25-35 mg/kg/day: -10.7%

Source: Labels for topiramate, lamotrigine and gabapentin

M-CERSI-FDA WORKSHOP: QUANTITATIVE ASSESSMENT OF ASSUMPTIONS TO SUPPORT EXTRAPOLATION OF EFFICACY IN PEDIATRICS, 06/01/2016
Evidence to Support “Full Extrapolation” of Efficacy
Concentration Metric Utilized for Comparing Exposures in Adults and Children

- Cmin: trough concentration at steady state
- Cavg: average concentration at steady state
- Same metric utilized between adults and children for a given drug
Concentrations at Approved Doses in Adults & Children

Doses in the boxes denote highest recommended maintenance doses
Evidence to Support “Full Extrapolation” of Efficacy
Methodology

a) Graphical Analysis

b) Model Based Analysis
Drug A
Exposure-Response in Adults & Children

Mean % CFB in Seizure Frequency/28 days vs Concentration

Log (% CFB in Seizure Frequency/28 days) vs Concentration

Adults
Children
Drug B
Exposure-Response in Adults & Children

Mean % CFB in Seizure Frequency/28 days

Concentration

% CFB in Seizure Frequency/28 days

Doses

Concentration

Adults

Children
Drug G
Exposure-Response in Adults & Children

![Graph showing predicted seizure rate during maintenance phase vs. normalized dose for Drug G](image)

- **Normalized Dose (mg)**
- **Predicted seizure rate during maintenance phase**

- **Red** line: Adults
- **Black** line: Children

M-CERSI-FDA WORKSHOP: QUANTITATIVE ASSESSMENT OF ASSUMPTIONS TO SUPPORT EXTRAPOLATION OF EFFICACY IN PEDIATRICS, 06/01/2016
Evidence Gathered from AEDs Approved Between 1960-1980

Carbamazepine
- Generally acceptable therapeutic range of total carbamazepine in plasma (i.e. 4-12 µg/mL) is the same in adult and children

Phenytoin
- Dose in pediatrics was selected such that it produces plasma concentration within the generally accepted therapeutic target of 10-20 µg/mL, which is same for adults

Valproic acid
- Approved in ≥ 10 years age, same dose and the same target therapeutic plasma concentration range (50 -100 µg/mL) are recommended.

Source: Labels for carbamazepine, phenytoin and valproic acid
Quantitative Assessment of Response, Exposures and Exposure-Response Supports “Full Extrapolation” of Efficacy
Required information to Support an Indication for the Treatment of POS in Patients ≥ 4 years

- Approved indication for the treatment of POS in adults.

- A pharmacokinetic analysis to determine a dosing regimen that provides similar drug exposure (at levels demonstrated to be effective in adults) in pediatric patients 4 years of age and older and in adult patients with POS. This analysis will require pharmacokinetic data from both the adult and children (4 years of age and older) populations.

- Long-term open-label safety study(ies) in pediatric patients 4 years of age and older.
Acknowledgements

- **FDA:**
 - OCP:
 - Angela Men
 - Atul Bhattaram
 - Mehul Mehta
 - Ramana Uppoor
 - Michael Bewernitz
 - Vikram Sinha*
 - Kevin Krudys
 - Joo Yeon Lee
 - DNP:
 - Billy Dunn
 - Eric Bastings
 - Norman Hershkowitz
 - Philip Sheridan
 - Cathleen Michaloski
- **UMD:**
 - Tao Liu (ORISE Fellow)
 - Joga Gobburu
- **PEACE:**
 - Jack Pellock
 - Neil D’Cruz
 - Jackie French
- **Epilepsy Foundation:**
 - Angela Ostrom
- **Sponsors for providing data**
- **FDA review teams**

Currently at Merck