Quantitative Analysis to Support Full Extrapolation of Efficacy in Children for Partial Onset Seizures in Adjunctive Setting: FDA-PEACE Initiative

Shailly Mehrotra

Center for Translational Medicine, UMD; ORISE Fellow, FDA

Office of Clinical Pharmacology, FDA

Division of Neurology Products, FDA

Disclaimer

The views expressed in this presentation do not necessarily represent the policies of the Food and Drug Administration or the Department of Health and Human Services.

Evidence to Support "Full Extrapolation" of Efficacy

Disease Similarity Between Adults & Children

- PEACE/DNP provided the clinical expertise to describe:
 - the *pathophysiology* of partial onset seizures (POS)
 - After excluding children under age 4 and those with POS associated with epileptic encephalopathies such as Lennox-Gastaut, the pathophysiology of POS is similar in children (≥ 4year old) and adults.

List of Drugs Investigated

Drug	Population	Mechanism of Action
Oxcarbazepine (Trileptal)	≥ 2 year	Blocks voltage dependent Na channels, increase K conductance and modulate high voltage activated Ca channels
Levetiracetam (Keppra)	≥ 1 month	Acts by binding to SV2A protein
Lamotrigine (Lamictal)	≥ 2 year	Inhibits voltage sensitive Na channels, stabilize neuronal membranes and modulates presynaptic release of excitatory neurotransmitter
Topiramate (Topamax)	≥ 2 year	Blocks voltage dependent Na channels, augments GABA activity, antagonize AMPA/Kainate subtype of glutamate receptor, inhibits carbonic anhydrase enzyme
Gabapentin (Neurontin)	≥ 3 years	Not known; binds with $\alpha 2\delta$ subunit of voltage activated calcium channel but therapeutic effects of binding are unknown
Perampanel (Fycompa)	≥12 year	Noncompetitive antagonist of AMPA glutamate receptor
Tiagabine (Gabitril)	≥12 year	Not known, enhances the activity of GABA an inhibitory neurotransmitter
Vigabatrin (Sabril)	≥10 year	Not known, increase levels of GABA in CNS

Trial Design and Primary Endpoint in Approval of AEDs in Adjunctive Setting

Plasma samples are collected in the maintenance phase

Evidence to Support "Full Extrapolation" of Efficacy

Observed Efficacy of Approved AEDs in Adults & Children from Registration Trials

Source: Labels for oxcarbazepine, perampanel and levetiracetam

Observed Efficacy of Approved AEDs in Adults & Children from Registration Trials

Source: Labels for topiramate, lamotrigine and gabapentin

Evidence to Support "Full Extrapolation" of Efficacy

Concentration Metric Utilized for Comparing Exposures in Adults and Children

- Cmin: trough concentration at steady state
- Cavg: average concentration at steady state
- Same metric utilized between adults and children for a given drug

Concentrations at Approved Doses in Adults & Children

*Doses in the boxes denote highest recommended maintenance doses

Evidence to Support "Full Extrapolation" of Efficacy

Methodology

a) Graphical Analysis

b) Model Based Analysis

Drug A Exposure-Response in Adults & Children

Drug B Exposure-Response in Adults & Children

Drug G Exposure-Response in Adults & Children

Evidence Gathered from AEDs Approved Between 1960-1980

Source: Labels for carbamazepine, phenytoin and valproic acid

Quantitative Assessment of Response, Exposures and Exposure-Response Supports "Full Extrapolation" of Efficacy

Required information to Support an Indication for the Treatment of POS in Patients ≥ 4 years

- Approved indication for the treatment of POS in adults.
- A pharmacokinetic analysis to determine a dosing regimen that provides similar drug exposure (at levels demonstrated to be effective in adults) in pediatric patients 4 years of age and older and in adult patients with POS. This analysis will require pharmacokinetic data from both the adult and children (4 years of age and older) populations.
- Long-term open-label safety study(ies) in pediatric patients 4 years of age and older.

Acknowledgements

- FDA:
 - OCP:
 - Angela Men
 - Atul Bhattaram
 - Mehul Mehta
 - Ramana Uppoor
 - Michael Bewernitz
 - Vikram Sinha*
 - Kevin Krudys
 - Joo Yeon Lee
 - DNP:
 - Billy Dunn
 - Eric Bastings
 - Norman Hershkowitz
 - Philip Sheridan
 - Cathleen Michaloski
 - DPMH:
 - Donna Snyder
 - Hari Sachs
 - * Currently at Merck

- UMD:
 - Tao Liu (ORISE Fellow)
 - Joga Gobburu
- PEACE:
 - Jack Pellock
 - Neil D'Cruz
 - Jackie French
- Epilepsy Foundation:
 - Angela Ostrom
- Sponsors for providing data
- FDA review teams