Quantitative Assessment of Exposure/Response Similarity in Rheumatoid Arthritis (RA) and Juvenile Idiopathic Arthritis (JIA)
INTRODUCTION

• Conducting studies in the pediatric population is challenging.
• Appropriate pharmacokinetic and pharmacodynamic studies may facilitate pediatric drug development by supporting partial extrapolation, dose optimization, and product labeling.
• Frequently, extrapolation of adult PK is required to inform pediatric dosing and study design.

Allometry

Physiologically Based PK

FDA PEDIATRIC DECISION TREE

Pediatric Study Planning & Extrapolation Algorithm

Is it reasonable to assume that children, when compared to adults, have a similar: (1) disease progression and (2) response to intervention?

- No to either
- Yes to both

Is it reasonable to assume similar exposure-response in pediatrics and adults?

- No
- Yes

Is the drug (or active metabolite) concentration measurable\(c,d\) and predictive of clinical response?

- No
- Yes

Is there a PD measurement that can be used to predict efficacy in children?

- No
- Yes

"Full extrapolation"\(f\)

Conduct:
(1) Adequate PK study to select dose(s) to achieve similar exposure as adults\(g\).
(2) Safety trials\(g\) at the identified dose(s).

"No extrapolation"\(f\)

Conduct:
(1) Adequate dose-ranging studies in children to establish dosing\(e\).
(2) Safety\(g\) and efficacy\(g\) trials at the identified dose(s) in children.

"Partial extrapolation"\(f\)

Conduct:
(1) Adequate dose-ranging study in children to select dose(s) that achieve the target PD effect\(e\).
(2) Safety trials at the identified dose(s).
SUMMARY OF APPROACHES TO EXTRAPOLATION

TABLE 1 Summary of Approaches to Use of Extrapolation of Efficacy From Adult Population to Pediatric Population

<table>
<thead>
<tr>
<th>Extrapolation of Efficacy From Adult Data</th>
<th>Assumptions Made to Extrapolate Efficacy</th>
<th>Purposes of Pediatric Studies</th>
<th>Supportive Evidence Requested From Pediatric Studies</th>
<th>Products for Which WRIs Issued, n/N (%)</th>
<th>New or Expanded Pediatric Indication Achieved, n/N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No extrapolation</td>
<td>Disease/condition and/or response to intervention are not similar.</td>
<td>Demonstration of efficacy and assessment of safety.</td>
<td>Two adequate, well-controlled, efficacy and safety trials plus pharmacokinetic data. For oncology products only, sequential approach starting with phase 1/2. Do not proceed if no evidence of response.</td>
<td>19/166 (11)</td>
<td>7/19 (37)</td>
</tr>
<tr>
<td>Partial extrapolation</td>
<td>Disease/condition and/or response to intervention are similar but there is some uncertainty about the strength of assumptions.</td>
<td>Confirmation of efficacy and assessment of safety.</td>
<td>Single, adequate, well-controlled, efficacy and safety trial plus pharmacokinetic data.</td>
<td>10/166 (6)</td>
<td>3/10 (30)</td>
</tr>
<tr>
<td></td>
<td>Disease/condition and/or response to intervention are similar but there is less uncertainty about the strength of assumptions (or patient numbers are such that it would not be feasible to conduct a controlled or adequately powered study).</td>
<td></td>
<td>Single, controlled or uncontrolled, efficacy and safety trial (qualitative data) plus pharmacokinetic data.</td>
<td>67/166 (40)</td>
<td>35/67 (52)</td>
</tr>
<tr>
<td>Complete extrapolation</td>
<td>Disease/condition and/or response to intervention are similar and there is a high degree of certainty about the strength of assumptions.</td>
<td>Confirmation of response and assessment of safety.</td>
<td>Single exposure-response trial (not powered for efficacy determination) plus pharmacokinetic and safety data, pharmacokinetic/pharmacodynamic and uncontrolled efficacy data plus safety data, or pharmacokinetic/pharmacodynamic data plus safety data.</td>
<td>20/166 (12)</td>
<td>15/20 (75)</td>
</tr>
<tr>
<td></td>
<td>Disease/condition and/or response to intervention are similar and there is a high degree of certainty about the strength of assumptions. Dose assumed to be the same (e.g., topical application).</td>
<td>Exposure data to confirm age-appropriate dose and assessment of safety.</td>
<td>Pharmacokinetic and safety data.</td>
<td>10/166 (6)</td>
<td>9/10 (90)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assessment of safety.</td>
<td>Safety data only.</td>
<td>14/166 (8)</td>
<td>6/14 (43)</td>
</tr>
</tbody>
</table>
CLINICAL PHARMACOLOGY MODELING & SIMULATION
KEY APPLICATIONS FOR PEDIATRIC EXTRAPOLATION

- **Optimize Dose And Regimen**
- **Optimize Trial Design**
- **Evaluate Intrinsic Factors**
- **Understanding of Disease in Pediatrics**

Dose Selection

Trial Simulation

Covariate Analysis

Systems Biology

Application to Optimize Regulatory Decision Making for Pediatric Plans
PLATFORM APPROACH TO IMPACT REGULATORY STRATEGY: STANDARDIZED APPROACH FOR PEDIATRIC STUDY PLANS

Application: Exploratory analysis to support PIP/PSP discussions
- Established Ph 1 adult and Japanese PK covered older adolescents
- Guided team to apply for adolescent waiver

Application: Pediatric dose selection discussions
- Guided age group and dose selection of Ph 1 bridging PK study
- Adult SKUs (70 to 140 mg) predicted to cover potential pediatric dose range

Demographic Model
- Regulatory feedback
- Sub-populations
- Additional demographic data

Computational Tool
S-PLUS code integrates demographic model and PK to provide best practice for pediatric simulations based on a large database

Study & Protocol Design

PIP/PSP Strategy

Data

Model

PK (drug attributes)

S-PLUS Code

Refinement

S-PLUS Code

Amgen Proprietary—For Internal Use Only
CASE STUDY:
ENBREL® (ETANERCEPT)

• A dimeric fusion protein consisting of the extracellular ligand-binding portion of the human p75 TNF receptor linked to the Fc portion of human IgG1
• It consists of 934 amino acids and has an apparent molecular weight of approximately 150 kD
• Etanercept is produced by recombinant DNA technology

Ig = immunoglobulin; TNF = tumor necrosis factor.
ROLE OF TNF IN THE PATHOGENESIS OF ARTHROPATHIES

• Plays a role in the inflammatory processes, resulting in joint pathology of
 – Rheumatoid arthritis (RA)
 – Polyarticular juvenile idiopathic arthritis
 – Psoriatic arthritis

TNF-ALPHA PLAYS A ROLE IN RA

Induction of inflammatory cytokines. Adhesion molecule expression

Stimulates synovial fibroblasts, osteoclasts, and chondrocytes

Release of tissue-destroying matrix metalloproteinases

Stimulates osteoclast development

Bone degradation

ENBREL® (ETANERCEPT): PHARMACOKINETICS

- Rheumatoid Arthritis 50 mg Weekly
 - Cmax 2.4 mcg/mL, half life 102 +/-30 hours
 - PK parameters were not different between men and women and did not vary with age in adult patients
 - Pharmacokinetics were not altered by concomitant MTA in RA patients
 - No formal renal or hepatic studies conducted
COMPARISON OF ADULT RA AND JIA
A CASE FOR EXTRAPOLATION?

<table>
<thead>
<tr>
<th></th>
<th>JIA</th>
<th>RA</th>
</tr>
</thead>
</table>
| **Clinical Profile** | Significant heterogeneity
• 7 disease subtypes
• Significant variation in developmental stage across age range | Heterogeneous, clinically similar |
| **PK/PD relationship** | Association of age and response not well characterized
Not established across a dose range | Established, concentration dependent across a dose range |
| **Trial Design** | Withdrawal/Flare Design | Traditional Induction Trial |
| **Outcome Measure** | JIA 30,50,70 score | ACR 20, 50,70 score |
| **Prevalence** | Rare Disease
70-100,000 active and inactive (CDC) | ~ 4.7 million |

Leverage Enbrel PK/PD from Adults with RA to Inform Treatment in JIA
SUMMARY OF APPROACHES TO EXTRAPOLATION

Table 1: Summary of Approaches to Use of Extrapolation of Efficacy From Adult Population to Pediatric Population

<table>
<thead>
<tr>
<th>Extrapolation of Efficacy From Adult Data</th>
<th>Assumptions Made to Extrapolate Efficacy</th>
<th>Purposes of Pediatric Studies</th>
<th>Supportive Evidence Requested From Pediatric Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>No extrapolation</td>
<td>Disease/condition and/or response to intervention are not similar.</td>
<td>Demonstration of efficacy and assessment of safety.</td>
<td>Two adequate, well-controlled, efficacy and safety trials plus pharmacokinetic data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For analagous products only, demonstration of response and assessment of safety.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For analagous products only, sequential approach starting with phase 1/2. Do not proceed if no evidence of response.</td>
</tr>
<tr>
<td>Partial extrapolation</td>
<td>Disease/condition and/or response to intervention are similar but there is some uncertainty about the strength of assumptions.</td>
<td>Confirmation of efficacy and assessment of safety.</td>
<td>Single, adequate, well-controlled, efficacy and safety trial plus pharmacokinetic data.</td>
</tr>
<tr>
<td></td>
<td>Disease/condition and/or response to intervention are similar but there is less uncertainty about the strength of assumptions (or patient numbers are such that it would not be feasible to conduct a controlled or adequately powered study).</td>
<td>Confirmation of response and assessment of safety.</td>
<td>Single, controlled or uncontrolled, efficacy and safety trial (qualitative data) plus pharmacokinetic data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single exposure-response trial (not powered for efficacy determination) plus pharmacokinetic and safety data, pharmacokinetic/pharmacodynamic and uncontrolled efficacy data plus safety data, or pharmacokinetic/pharmacodynamic data plus safety data.</td>
</tr>
<tr>
<td>Complete extrapolation</td>
<td>Disease/condition and/or response to intervention are similar and there is a high degree of certainty about the strength of assumptions.</td>
<td>Exposure data to confirm age-appropriate dose and assessment of safety.</td>
<td>Pharmacokinetic and safety data.</td>
</tr>
<tr>
<td></td>
<td>Disease/condition and/or response to intervention are simplified.</td>
<td>Assessment of safety.</td>
<td>Safety data only.</td>
</tr>
</tbody>
</table>

Clinical Strategy for Enbrel® (etanercept) JIA
Partial Extrapolation

ENBREL®(ETANERCEPT) CASE STUDY:
STEPS IN EXTRAPOLATION IN JIA POPULATION

Integrate
- Integrate prior clinical data on etanercept using a population PK model
- Understand assumptions of the model such as similar disease progression across populations

Extrapolate
- Make adjustments to model to account for potential differences in pediatric subjects
- Extrapolate PK and conduct clinical trial simulations
- Optimize design of pediatric trial

Validate
- Conduct clinical trial to validate predictions
- Confirm dosing in pediatrics
- Propose interchangeability across regimen based on trial simulations
ENBREL® (ETANERCEPT) CASE STUDY

ADULT POPULATION PKPD ANALYSIS

- **Population PK Model**
 - 1 Compartment with 1st order abs.
 - Covariates of sex and race on CL/F and standardized body weight on CL/F and V/F

- **Population PKPD Model**
 - Cumulative AUC as exposure variable related with binary ACR clinical outcome variable

Adult Model Based PKPD Analyses are the 1st step to Support the Pediatric Extrapolation Strategy

Lee et al, CPT, 73, 2003
ENBREL® (ETANERCEPT) CASE STUDY: STEPS IN EXTRAPOLATION IN JIA POPULATION

<table>
<thead>
<tr>
<th>Integrate</th>
<th>Extrapolate</th>
<th>Validate</th>
</tr>
</thead>
</table>
| • Integrate prior clinical data on etanercept using a population PK model
 • Understand assumptions of the model such as similar disease progression across populations | • Make adjustments to model to account for potential differences in pediatric subjects
 • Extrapolate PK and conduct clinical trial simulations
 • Optimize design of pediatric trial
 • Propose mg/kg dosing in pediatrics | • Conduct clinical trial to validate predictions
 • Confirm dosing in pediatrics
 • Propose interchangeability across regimen based on trial simulations |
ENBREL® (ETANERCEPT) IN MODERATELY TO SEVERELY ACTIVE POLYARTICULAR JUVENILE IDIOPATHIC ARTHRITIS (JIA)

ENBREL is indicated for reducing signs and symptoms of moderately to severely active polyarticular JIA in patients ages 2 and older.

<table>
<thead>
<tr>
<th>Study Name (Patient Type)</th>
<th>Etanercept (ETN) Therapy</th>
<th>Journal Citation</th>
</tr>
</thead>
</table>

Above referenced study is included in the Enbrel® (etanercept) Prescribing Information. It is not listed with a study number.

STUDY DESIGN

• Objective
 – To evaluate the efficacy and safety profile of ETN in children (4–17 years) with polyarticular JIA who did not tolerate or had an inadequate response to MTX

• Endpoints
 – Primary: The number of patients developing disease flare in the double-blind phase
 – Others: Changes of individual measures of disease activity

STUDY DESIGN (CONT’D)

- 69 children with moderately to severely active polyarticular JIA with a variety of onset types were evaluated
- Patients were refractory to or intolerant to MTX
- Stable dose of a single nonsteroidal anti-inflammatory drug (NSAID) and/or prednisone (≤ 0.2 mg/kg/day or 10 mg maximum) were allowed
- Two-part trial
 - Part 1: All patients received ETN 0.4 mg/kg (maximum 25 mg per dose) subcutaneously (SC) twice weekly
 - Part 2: At day 90, the 51 responders were randomized to continue ETN or receive placebo (PBO) for 4 months and assessed for disease flare
Part 1
Open-Label
Months 1–3

Part 2
Double-Blind
Months 4–7

Ongoing Open-Label Extension (OLE)
Months 8–96

Responders
Randomized

ETN (n = 69)

PBO (n = 26)

ETN (n = 25)

ETN (n = 58*)

Dose: ETN 0.4 mg/kg SC twice weekly (maximum 25 mg/dose)

*Includes 8 nonresponders from part 1 and 25 patients from each arm in part 2.

After 1 year of the extension, the use and doses of corticosteroids, NSAIDs, and pain medications could be adjusted and MTX could be added.

ENDPOINTS

• Primary
 – Patients with disease flare in part 2 (double-blind portion) of the study defined as
 • ≥ 30% worsening in 3 of 6 JIA core set criteria* and a minimum of 2 active joints
 • ≥ 30% improvement in no more than 1 of 6 JIA core set criteria*

• Other
 – Definition of response (part 1)
 • JIA definition of improvement (JIA 30 response)
 – ≥ 30% improvement in at least 3 of 6 JIA core set criteria,* and
 – ≥ 30% worsening in no more than 1 of the 6 JIA core set criteria*
 • JIA 50 and 70 responses†
 • Improvement in the individual components of the JIA core set criteria
 • Safety

*Active joint count, number of joints with limitation of motion, patient/parent global assessment, physician global assessment, functional assessment (Childhood Health Assessment Questionnaire), and erythrocyte sedimentation rate. Number of joints with limitation of motion was accompanied by pain and/or tenderness.
†JIA 50 and 70 responses were defined by a 50% or 70% improvement, respectively, in at least 3 of the 6 response criteria with no more than 1 criterion worsening by more than 30%.

JIA STUDY: BASELINE PATIENT DEMOGRAPHICS

<table>
<thead>
<tr>
<th>Subject Disposition (n = 69)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Female (%)</td>
<td>62</td>
</tr>
<tr>
<td>Caucasian (%)</td>
<td>75</td>
</tr>
<tr>
<td>Mean age in years (range)</td>
<td>10.5 (4–17)</td>
</tr>
<tr>
<td>Mean JIA disease duration in years</td>
<td>5.9</td>
</tr>
<tr>
<td>MTX at washout (%)</td>
<td>72</td>
</tr>
<tr>
<td>Concomitant therapy (%) at start of washout period*</td>
<td></td>
</tr>
<tr>
<td>• NSAIDs</td>
<td>96</td>
</tr>
<tr>
<td>• Corticosteroids</td>
<td>36</td>
</tr>
</tbody>
</table>

- From study onset through year 1 of the extension, prednisone dose had to remain stable (0.2 mg/kg/d or 10 mg/d maximum). After year 1 of the extension, doses of corticosteroids, NSAIDs, and pain medications could be adjusted and MTX could be added (10–20 mg/m²/wk)
 - ENBREL is not approved for use in patients with pediatric plaque psoriasis

OPEN-LABEL: CLINICAL RESPONSE

- 51 of 69 (74%) patients demonstrated a clinical response in part 1 (open-label phase) and entered part 2 (double-blind phase)
DOUBLE-BLIND: DISEASE FLARE

Percentage of Patients Experiencing Flare

- **PBO (n = 26)**
 - 77%
 - Median Time to Flare: 28 days

- **ETN (n = 25)**
 - 24%
 - Median Time to Flare: ≥ 116 days

*P = 0.007

*6 of 25 patients

*20 of 26 patients
DOUBLE-BLIND: CLINICAL RESPONSE*

*At the end of the 7-month study (3-month open-label and 4-month double-blind).

†P < 0.01 ETN vs PBO.

ENBREL® (ETANERCEPT) CASE STUDY:
STEPS IN EXTRAPOLATION IN JIA POPULATION

Integrate

- Integrate prior clinical data on etanercept using a population PK model
- Understand assumptions of the model such as similar disease progression across populations

Extrapolate

- Make adjustments to model to account for potential differences in pediatric subjects
- Extrapolate PK and conduct clinical trial simulations
- Optimize design of pediatric trial

Validate

- Conduct clinical trial to validate predictions
- Confirm dosing in pediatrics
- Propose interchangeability across regimen based on trial simulations
Initial efficacy study dose was at 0.4 mg/kg twice weekly.

Simulation study at 0.8 mg/kg once weekly:
- Widely overlapping concentration profiles at steady-state.

Yim, et al, JCP 45, 2005
CLINICAL PHARMACOLOGY, MODELING AND SIMULATION APPLYING DIVERSE TECHNOLOGIES TO SERVE A UNIFIED PURPOSE

Integrate
• Integrate prior clinical data on etanercept using a population PK model
• Understand assumptions of the model such as similar disease progression across populations

Extrapolate
• Make adjustments to model to account for potential differences in pediatric subjects
• Extrapolate PK and conduct clinical trial simulations
• Optimize design of pediatric trial

Validate
• Conduct clinical trial to validate predictions
• Confirm dosing in pediatrics
• Propose interchangeability across regimen based on trial simulations

“Advancing our Understanding of Biology to Advance Clinical Medicine”
ACKNOWLEDGEMENTS

- James Chung, MD
- Jane Parnes, MD
- David Reese, MD
- Elliott, Levy, MD
- Lisa Bollinger, MD
- Mark Taisey, Ph.D.
- Sree Kaishchayananula, Ph.D.
- John Gibbs, Ph.D.
- Andrew Chow, Ph.D.
- Desmond Padhi, PharmD.
- Deborah Wenkert, MD