Pediatric Drug Development: Successes and Challenges

Lynne Yao, M.D.
Director, Division of Pediatric and Maternal Health
Office of New Drugs
Center for Drug Evaluation and Research
U.S. FDA
September 23, 2016
Disclosure Statement

• I have no financial relationships to disclose relating to this presentation

• The views expressed in this talk represent my opinions and do not necessarily represent the views of FDA
Pediatric Drug Development
General Principles

• Pediatric patients should have access to products that have been appropriately evaluated

• Product development programs should include pediatric studies when pediatric use is anticipated

From FDA guidance to industry titled *E11 - Clinical Investigation of Medicinal Products in the Pediatric Population*, December 2000
Special Considerations for Pediatric Product Development

• Ethical considerations
 – Children should only be enrolled in a clinical trial if the scientific and/or public health objectives cannot be met through enrolling subjects who can provide informed consent personally (i.e., adults)
 – Absent a prospect of direct therapeutic benefit, the risks to which a child would be exposed in a clinical trial must be “low”
 – Children should not be placed at a disadvantage after being enrolled in a clinical trial, either through exposure to excessive risks or by failing to get necessary health care

• Feasibility considerations
 – The prevalence and/or incidence of a condition is often much lower compared to adult populations
Pediatric Drug Development Laws

• **Best Pharmaceuticals for Children Act (BPCA)**
 – Section 505A of the Federal Food, Drug, and Cosmetic Act
 – Provides a financial incentive to companies to voluntarily conduct pediatric studies
 – FDA and the National Institutes of Health partner to obtain information to support labeling of products used in pediatric patients (Section 409I of the Public Health Service Act)

• **Pediatric Research Equity Act (PREA)**
 – Section 505B of the Federal Food, Drug, and Cosmetic Act
 – **Requires** companies to assess safety and effectiveness of certain products in pediatric patients
PREA vs. BPCA

<table>
<thead>
<tr>
<th>PREA</th>
<th>BPCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Drugs and biologics</td>
<td>• Drugs and biologics</td>
</tr>
<tr>
<td>• Required studies</td>
<td>• Voluntary studies</td>
</tr>
<tr>
<td>• Studies may only be required for approved indication(s)</td>
<td>• Studies relate to entire moiety and may expand indications</td>
</tr>
<tr>
<td>• Products with orphan designation are exempt from requirements</td>
<td>• Studies may be requested for products with orphan designation</td>
</tr>
<tr>
<td>• Pediatric studies must be labeled</td>
<td>• Pediatric studies must be labeled</td>
</tr>
</tbody>
</table>

- **PREA** is for **Drugs and biologics** and requires studies for approved indications.
- **BPCA** is for **Voluntary** studies that may expand indications.

BPCA allows for voluntary studies and includes pediatric studies which must be labeled.

PREA is more stringent with required studies and products with orphan designation are exempt from requirements. **BPCA** is more flexible with voluntary studies and includes products with orphan designation.
Pediatric Review Committee Activities
Written Requests Issued 1998-2015
Written Requests issued 2015

Number

- Rheumatology
- Psychiatry
- Nephrology
- Oncology
- Ophthalmology
- GI/Inborn Errors of Metabolism
- Endocrinology/Metabolism
- Dermatology
- Cardiovascular
- Anti-Viral
Pediatric Labeling Changes 2005-2015

![Bar chart showing the number of labeling changes by year from 2005 to 2015.](chart.png)

- **2005**: Number of labeling changes
- **2007**: Number of labeling changes
- **2009**: Number of labeling changes
- **2011**: Number of labeling changes
- **2013**: Number of labeling changes
- **2015**: Number of labeling changes

Legend:
- **Number of labeling changes**
Pediatric Product Development in 2016

• Pediatric Product Development matured
 – Over 600 products now labeled with pediatric-specific information

• Increased experience and understanding of
 – Pediatric clinical trial design
 – Pediatric extrapolation
Pediatric Extrapolation

• Efficacy may be extrapolated from adequate and well-controlled studies in adults to pediatric patients if:
 – The course of the disease is sufficiently similar
 – The response to therapy is sufficiently similar

• Dosing cannot be fully extrapolated

• Safety cannot be fully extrapolated
Summary of Approaches to Extrapolation 1998-2008

<table>
<thead>
<tr>
<th>Extrapolation</th>
<th>Supportive Evidence Requested From Pediatric Studies</th>
<th>Products n/N (%)</th>
<th>New or Expanded Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Two adequate, well-controlled, efficacy and safety trials plus PK data.</td>
<td>19/166 (11)</td>
<td>7/19 (37)</td>
</tr>
<tr>
<td></td>
<td>Oncology products only: sequential approach starting with phase 1/2. Do not proceed if no evidence of response.</td>
<td>10/166 (6)</td>
<td>3/10 (30)</td>
</tr>
<tr>
<td>Partial</td>
<td>Single, adequate, well-controlled, efficacy and safety trial (powered for efficacy) plus PK data.</td>
<td>67/166 (40)</td>
<td>35/67 (52)</td>
</tr>
<tr>
<td></td>
<td>Single, controlled or uncontrolled, efficacy and safety trial (qualitative data) plus PK data.</td>
<td>20/166 (12)</td>
<td>15/20 (75)</td>
</tr>
<tr>
<td></td>
<td>Single exposure-response trial (not powered for efficacy) plus PK and safety data, PK/PD and uncontrolled efficacy plus safety data, or PK/PD plus safety data.</td>
<td>26/166 (16)</td>
<td>19/26 (73)</td>
</tr>
<tr>
<td>Complete</td>
<td>PK and safety data.</td>
<td>10/166 (6)</td>
<td>9/10 (90)</td>
</tr>
<tr>
<td></td>
<td>Safety data only.</td>
<td>14/166 (8)</td>
<td>6/14 (43)</td>
</tr>
</tbody>
</table>
Review of Extrapolation

• First published review in 2011 based on 166 products with submitted pediatric studies between 1998-2008
• Recent review (just completed in 2016) based on 157 products with submitted pediatric studies between 2009-2014
 – Partial extrapolation decreased from 68% to 29%
 – Both Complete and “No” Extrapolation increased
• Changes in extrapolation based on:
 – Evolving science and knowledge from the pediatric trials that allow one to be more confident in assumptions
 – Failed pediatric trials and better understanding of the differences between adults and children
 – New science in the area of molecular or genetic biology
Challenges in the 21st Century

• Pediatric-specific diseases
 – Neonates and pre-term infants
 – Rare diseases, including pediatric cancers
• Long-term safety
 – Chronically administered drugs
 – Drugs administered during specific developmental periods
• Improving efficiency in pediatric product development
 – Coordinated global development programs
 – External and International collaborations
 – Clinical research networks
 – Innovate clinical trial designs
Pediatric Specific Diseases

• Pediatric Cancer
 – Traditionally understudied because PREA does not apply to many adult-only cancers

• Neonatal population
 – Only 35% of commonly used drugs in NICU are FDA approved*
 – Of 409 drugs with pediatric-specific labeling changes between 1997-2010, only 28 included information for use in neonates

Long-term Safety

• Pediatric long-term safety questions persist
• Many issues related to long-term safety of drugs used in children are unknown and not well studied
• Advancing Development of Pediatric Therapeutics (ADEPT)
 – ADEPT 1 held in June, 2014 discussed long-term bone health issues
 – ADEPT 2 held in April 2015 discussed evaluation of long-term neurocognitive and behavioral outcomes
 – ADEPT 3 held in April 2016 discussed long-term safety of drugs used in infants and children
Strategies to Address Challenges
International Collaborations

• Monthly Pediatric Cluster Conference
 – European Medicines Agency (EMA); Japan Pharmaceuticals and Medical Devices Agency (PMDA); Health Canada (HC); Australia Therapeutic Goods Administration (TGA)

• ICH E11 (pediatrics) addendum
 – Updates on several topics including extrapolation, modeling and simulation, ethics
Pediatric Research Initiatives and Networks

• Critical path launched two pediatric network initiatives in 2014
 – International Neonatal Consortium (INC)
 – Pediatric Trials Consortium (PTC)—plan to advance to an independent non-profit (Institute for Advanced Clinical Trails for Children)

• European Research Network initiatives
 – European Network of Pediatric Research at EMA (Enpr-EMA)
 – GriP (Global Research in Paediatrics)
 – Consortium for Innovative Therapies for Children with Cancer (ITCC)
 – Paediatric European Network for Treatment of AIDS (PENTA)
 – UK Clinical Research Network (UK CRN)
Innovative Clinical Trial Designs

• Bayesian Modeling Applied to Pediatric Trials
 – Make use of, or borrow, prior information in pediatric trials
 – Provides a formal approach for incorporating prior information into the planning and the analysis of the next study
 – Bayesian statistical modeling is NOT the same as Pharmacometric modeling
Master Protocols

• One overarching protocol that includes one or more of the following:
 – Multiple diseases
 – Multiple treatments
 – Multiple molecular markers

• Master Protocols can increase efficiency of clinical trials

• Requires collaboration between academic investigators and/or industry sponsors with input from regulatory authorities
Pediatric Product Development in the 21st Century

- Children are protected THROUGH research, not from it
 - BPCA and PREA have led to incorporation of pediatric-specific labeling in over 600 products
- Commitment and collaboration to increase availability of safe and effective treatments for pediatric patients
- FDA committed to working with external stakeholders to improve efficiency of pediatric clinical trials
 - Extrapolation
 - Innovative clinical trial designs
 - Clinical trial networks