

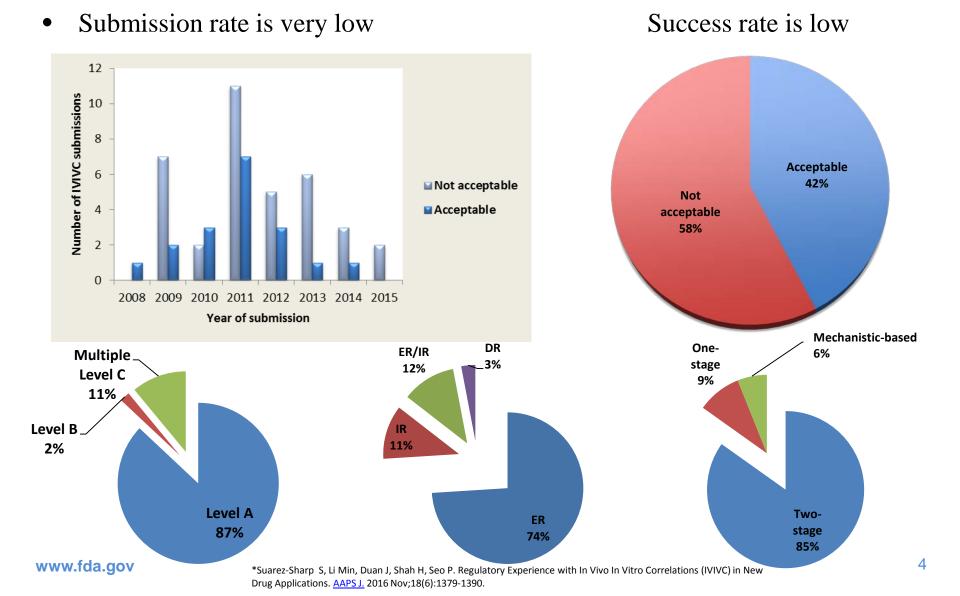
# Biorelevant Dissolution Testing for In Vitro In vivo Correlation/Relationship (IVIVC/R) Development: Regulatory Perspective

Min Li, Ph.D. Division of Biopharmaceutics U.S. FDA/CDER/OPQ/ONDP May 17, 2017



# Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.


# **IVIVC/R** Concept

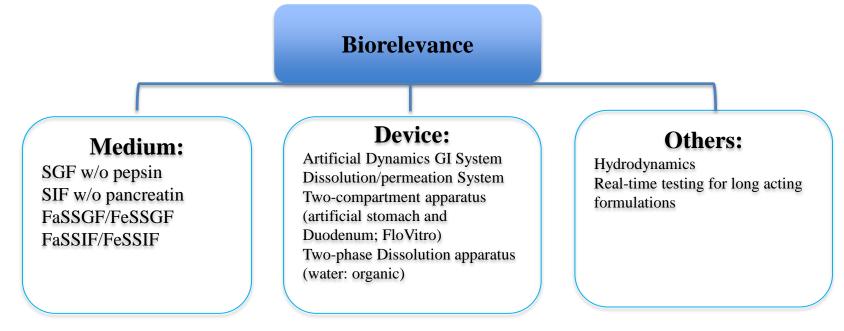


- IVIVC: "a predictive mathematical model describing the relationship between an in vitro property of a dosage form (e.g., the rate or extent of drug dissolution or release) and a relevant in vivo response (e.g., plasma drug concentration or amount of drug absorbed)"
- IVIVR: a semi-quantitative or rank-order relationship between an in vitro property of a dosage form (e.g., the rate or extent of drug dissolution or release) and a relevant in vivo response (e.g., plasma drug concentration or amount of drug absorbed)
- IVIVC/R applications:
  - ➢ Biowaiver (IVIVC)
  - Clinically relevant dissolution specification
  - Risk assessment and clinically relevant design space/specifications in QbD

### Current Status of IVIVC Studies in the NDA and IND Submissions






# Analyzing Root Causes for Underutilized Status/Low Success Rate of IVIVC/R

- It is very challenging for IVIVC development meeting regulatory requirements (e.g., 3 release rates; cross-over studies; fasted conditions)
- Low success rate of IVIVC studies is discouraging
  - It could be very challenging to correlate in vitro dissolution vs in vivo absorption which is a complex integration of in vivo dissolution, GI transition, degradation, GI absorption, first-pass metabolism etc.)
  - The conventional IVIVC methodologies (e.g., two-stage) take insufficient considerations on drug in vivo dissolution and absorption mechanisms under physiological state
  - > The compendial in vitro dissolution test may not be bio-predictive

### **Biorelevant Dissolution Testing**



A biorelevant dissolution test can be defined as an in vitro test that reflects physiological environment in the test conditions with a purpose of correlating in vitro with in vivo drug absorption



### **Opportunities and Challenges of Biorelevant Dissolution**



# • Opportunities: streamline product development and lead to time and cost savings during product development

- Pre-clinical development: screen active pharmaceutical ingredient; select/ develop formulation selection; guide quality control method development
- Clinical development: correlate with in vivo dissolution; support clinical trial design; investigate food effect; explore IVIVC/R; assess the risk and impact of CMC on the in vivo performance; clinically relevant specifications and control strategies; bridging formulations; etc.
- Lifecycle: support post-approval changes (via IVIVC/R)

#### • Challenges:

- Complex medium/device/procedures
- Unrealistic for quality control purposes
- > May not guarantee a correlation with the in vivo

### **Current Status of Biorelevant Dissolution Testing in the Submissions of IVIVCs**



#### • 5 out of 53 IVIVCs used biorelevant media in the dissolution testing

| Drug<br>product | Dosage form | Dissolution method                                                                     | Development<br>strategy | Accetable<br>or not | Deficiencies                                                                                                                                                                                                                                                                 |
|-----------------|-------------|----------------------------------------------------------------------------------------|-------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А               | IR tablet   | Apparatus I; rpm 100;<br>pH1.2 mSGF without<br>pepsin; 900 mL                          | Two-Stage               | No                  | <ol> <li>In vivo studies were conducted in fed condition<br/>while food has significant effect on drug absorption;</li> <li>Excluding 4 subjects' in vivo data from a total 16<br/>subjects without acceptable justifications; 3.<br/>inconclusive predictability</li> </ol> |
| В               | ER tablet   | Apparatus II; rpm 100;<br>pH 6.8 SIF without<br>pancreatin; 900 mL                     | One-Stage               | No                  | 1. Non-mechanistic term was included in the model without reasonable justification; 2. Mean in vivo data instead of individual data was used                                                                                                                                 |
| С               | ER capsule  | Apparatus I; rpm 75;<br>SGF for 2 hrs followed<br>by pH7.0 buffer for 4<br>hrs; 900 mL | Two-Stage               | No                  | 1. No difference in the in vitro release rate between formulations; 2. In vitro and in vivo data were not from the same batch                                                                                                                                                |
| D               | ER tablet   | Apparatus II; 50 rpm;<br>SGF without pepsin,<br>pH 1.2; 900 mL                         | Two-Stage               | No                  | No submissions of the in vivo/vitro data, model files<br>and IVIVC study report                                                                                                                                                                                              |
| Е               | ER capsule  | Apparatus I; rpm 100;<br>pH1.2 SGF without<br>pepsin; 900 mL; 12 hrs                   | Two-Stage               | Yes                 | N/A                                                                                                                                                                                                                                                                          |

- Use of biorelevant medium alone may not lead to increased success rate of IVIVCs
- The failure of IVIVC models was due to common deficiencies in IVIVC development

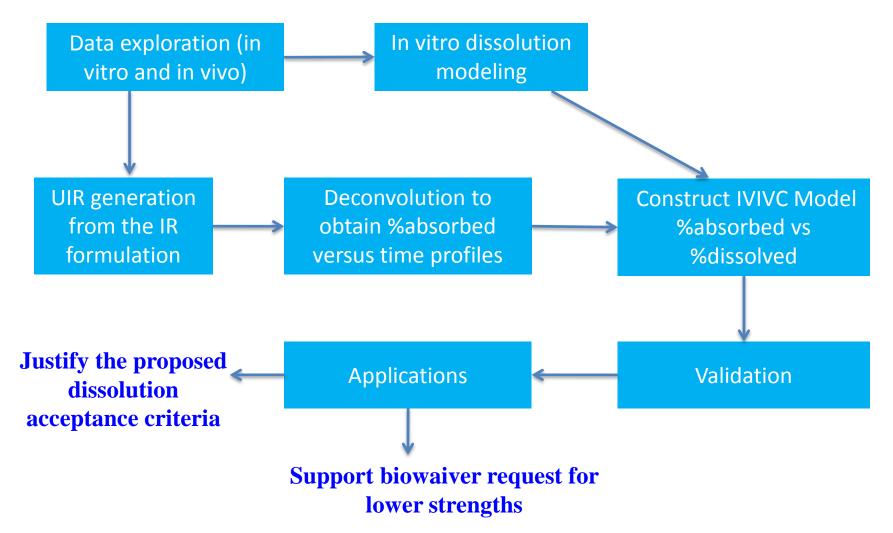
### Case Study: Drug Product E



#### • Drug product information:

- ER capsules: polymer-based delivery system
- ➢ BCS Class I
- Multiple strengths: compositionally proportional

#### • Objectives of the IVIVC study

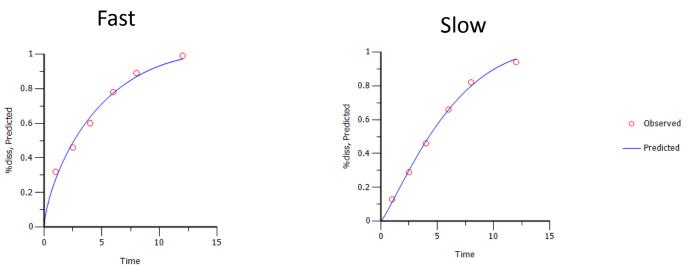

- To request the waiver of the in vivo BE for the lower strengths (the four strengths are dose proportional)
- To support dissolution specification

#### • Formulations for IVIVC development

Different release rates were produced by varied ratio of coated ER beads

# Level A Two-Stage IVIVC Flow Chart






### In Vitro Dissolution Data and Modeling

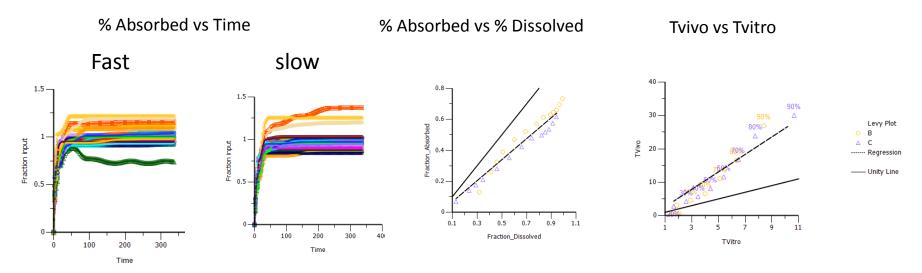


#### • In vitro dissolution method (same as the QC method):

- USP Apparatus I
- ▶ rpm 100
- > 900 mL Simulated Gastric Fluid without pepsin, pH 1.2
- Drug dissolution was demonstrated condition independent (pH 1.2, 5.0 and 6.8; rpm 50, 100, and 150), indicating one release rate for IVIVC model development may be sufficient per IVIVC Guidance



Makoid Banakar model was selected based on AIC, CV%, residual plot, predicted vs. observed plot


www.fda.gov

#### In Vivo Data and IVIVC Model Development

# FDA

#### • In vivo data from a single dose cross-over study including:

- ➤ Unit impulse response (UIR) generated from IR tablet
- Slow and fast release formulations used for model construction (deconvolution-based) and internal validation
- ➤ To-be-marketed formulation was used for external validation
- Individual deconvolution
- Linear IVIVC model: Fabs = AbsScale\*Diss(Tscale\*Tvivo)



### Model Validation



| Formulation  | Parameter | % P.E. |
|--------------|-----------|--------|
| Fast release | AUC       | 0.71   |
| Fast release | Cmax      | 5.27   |
| Slow release | AUC       | 1.71   |
| Slow release | Cmax      | 8.22   |
| Avglatoraal  | AUC       | 1.21   |
| Avg Internal | Cmax      | 6.75   |
| Extornal     | AUC       | 8.4    |
| External     | Cmax      | 0.8    |

#### Validation acceptance criteria (per IVIVC guidance):

Internal validation: average absolute percent prediction error (% PE) of 10% or less for Cmax and AUC and the % PE for each formulation should not exceed 15% External validation:% PE of 10% or less for Cmax and AUC

## **IVIVC** Application 1: Biowaiver



Step 1: Collect dissolution profiles of primary batches at lower strengths

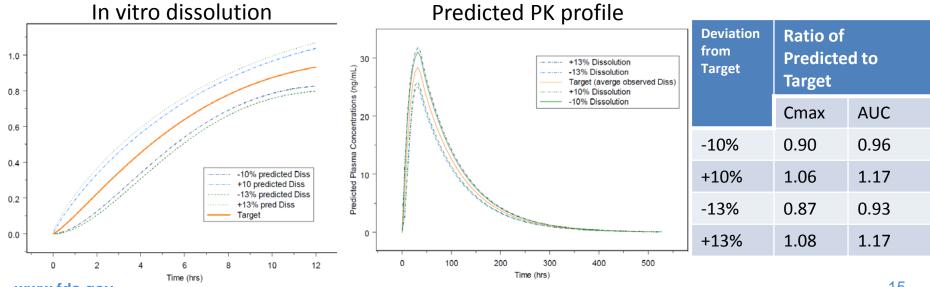
Step 2: In vitro dissolution profile modeling (same model as IVIVC construction

Step 3: Predict plasma drug concentration time profiles for the lower strengths based on convolution using the IVIVC model

Step 4: Evaluate BE using predicted PK parameters (after dose

normalization)

Biowaiver of all lower strengths were granted


| Strength | Parameter | Ratio of predicted to the target |
|----------|-----------|----------------------------------|
| S1       | AUClast   | 1.19                             |
| 51       | Cmax      | 1.05                             |
| S2       | AUClast   | 1.18                             |
| 52       | Cmax      | 1.04                             |
| S3       | AUClast   | 1.18                             |
| 33       | Cmax      | 1.04                             |

### **IVIVC** Application 2: Dissolution Acceptance Criteria



#### **Current practice for ER products:**

- $\succ$  at least three time points covering the initial, middle, and terminal phases of the complete dissolution profile
- $\succ$  the selection of acceptance criteria ranges is based on mean target value +10% and NLT 80% for the last specification time-point
- $\blacktriangleright$  wider specification ranges may be acceptable if justified with IVIVC



# Summary



- It could be very challenging for IVIVC/R development indicated by low submission/success rate of IVIVCs in the new drug applications
- Biorelevant dissolution method was not often considered in the IVIVC/R development
- The use of biorelevant medium alone may not lead to increased success rate of IVIVCs
- New modeling approaches are needed to guide bio-predictive dissolution method development and support IVIVC establishment (e.g., PBPK absorption modeling and simulation)



# Acknowledgments

Dr. Sandra Suarez-Sharp Dr. John Duan Dr. Kimberly Raines Dr. Paul Seo

All colleagues in Division of Biopharmaceutics at FDA

