Case Study: Merck & Co., Inc.

Use of In Vivo Pharmacokinetic Data to Develop a CRS for In Vitro Dissolution Testing

Barbara M. Davit Merck & Co., Inc. ("Merck")

UMD/FDA CERSI Workshop May 17, 2017

- Background
- Objectives
- > Methods
- > Results
- ➤ Conclusions

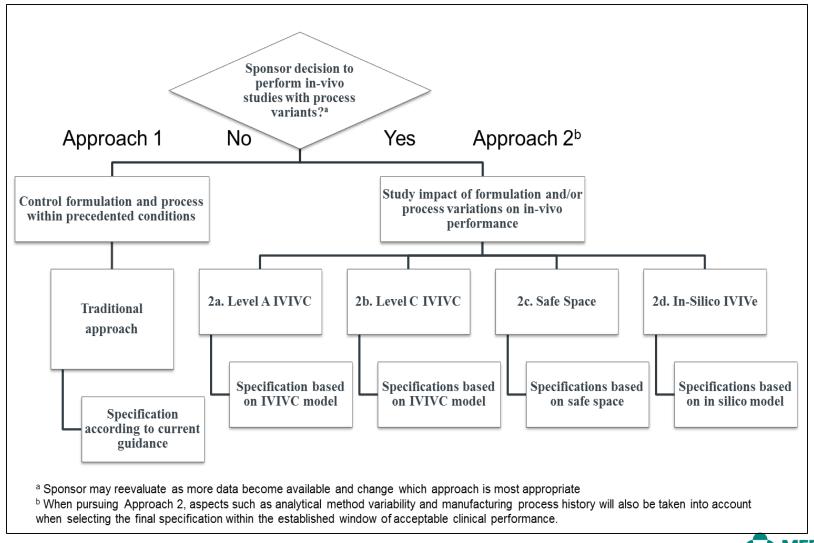
- > Background
- Objectives
- > Methods
- > Results
- Conclusions

A useful approach for designing CRS

Manufacture tablets with different dissolution rates

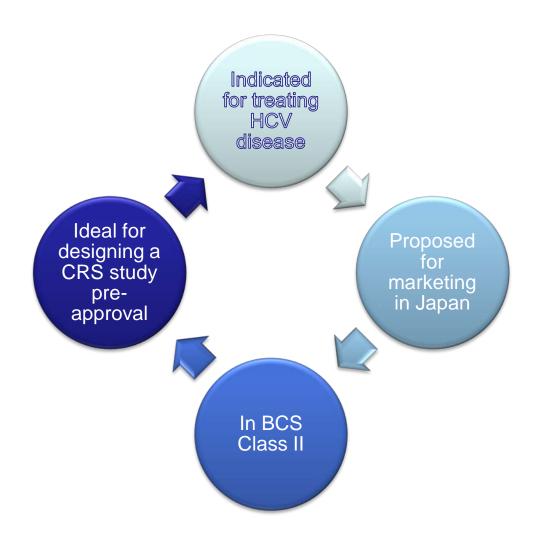
- Fast, slow, target
- Target batch usually biobatch
- Target batch should be representative of Phase III supplies

Compare in vivo performance in a clinical PK study


- Approach is ideal for BCS Class II and Class IV drugs
- Can be implemented preor post-approval

Use results to set CRS

- If establish IVIVC, use model to set CRS
- If in vitro has no effect on PK, base CRS on a "safe space"



Review of CRS Road-Map

Use of Approach 2 for establishing CRS for Grazoprevir (GZR) 50-mg Tablets

- Background
- >Objectives
- > Methods
- > Results
- **≻**Conclusion

Objectives of an in vivo PK study of GZR tablet formulations

To support a CRS strategy for in vitro dissolution testing of GZR 50-mg tablets by

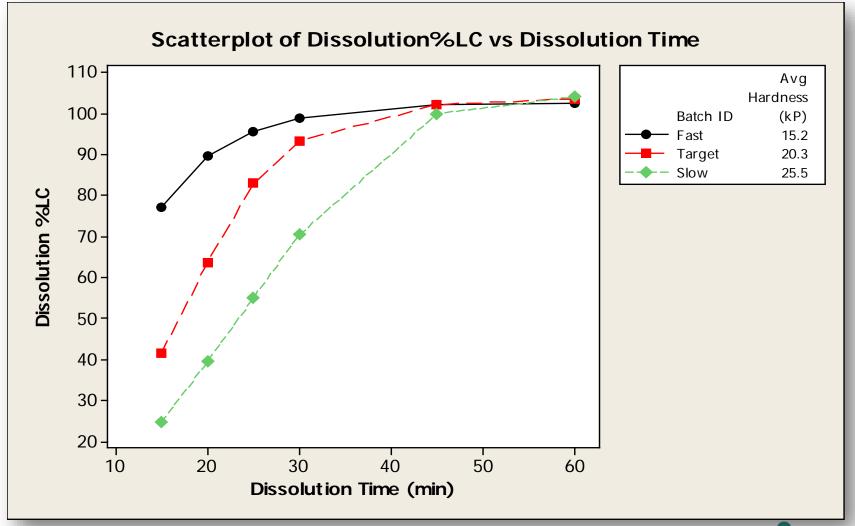
Manufacturing tablets with different dissolution rates, and

Determining whether in vitro dissolution rate affects in vivo bioavailability (BA)

- Background
- ➤ Objectives
- >Methods
- > Results
- ➤ Conclusion

Three batches of Grazoprevir Tablets were manufactured for developing CRS

- Target: Same manufacturing conditions as the biobatch
- Fast: Rapid dissolution profile was achieved by compressing the tablets to a sufficiently low hardness that still passed the USP friability test but beyond the hardness level intended for commercial distribution
- Slow: Slow dissolution profile was achieved by compressing the tablets to a hardness a or near the plateau of the compression profile and to the maximum allowable force of the tooling



Methods: GRZ tablets processed to achieve f₂ (<50) dissimilar profiles to target

Formulation (hardness)	F ₂ similarity to target (20.3 kP)			
Fast (15.2 kP)	34			
Slow (25.5 kP)	39			

Methods: dissolution profiles of 3 GZR formulation batches

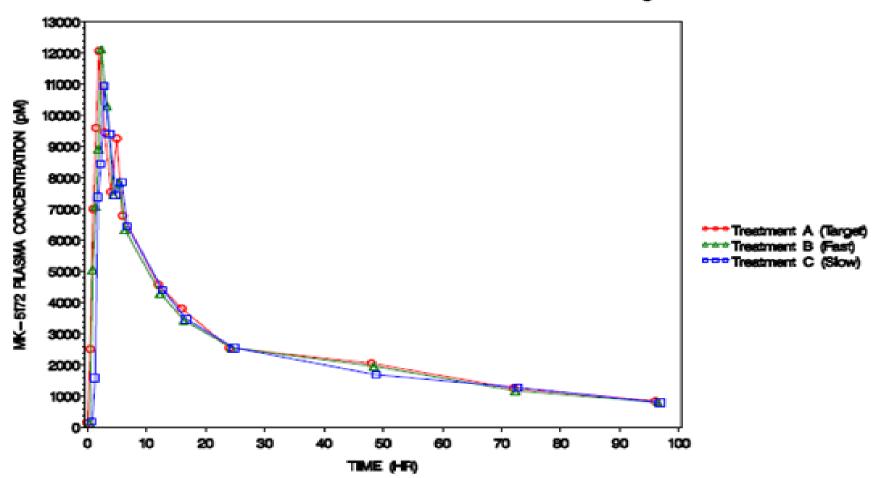
Methods: clinical PK study of GZR formulation batches

Parameter	Study conduct
Design	Single-dose, randomized, open-label, 3-treatment, 3-period, 6-sequence, 7-day washout
N	24 healthy normal subjects
Dose	50 mg tablet
Treatments	Fast, Target, Slow Tablets
PK metrics	AUC _{0-t} , AUC∞, C _{max} , T _{max} , t _{1/2}
Statistics	Ln-transformed PK parameters analyzed by linear mixed-effect model with fixed-effects terms for treatment and period
BA comparisons	Geometric mean ratios (GMRs) and 2-sided 90% Confidence Intervals (CIs) calculated for test = fast or slow versus reference = target

- Background
- ➤ Objectives
- > Methods
- >Results
- **≻**Conclusions

Results: GZR in vivo BA from fast and slow tablets was comparable to target

Test	Parameter	GMR, test/ref	90% CI, test/ref
Fast Tablet	AUC	0.99	0.92, 1.06
	C _{max}	0.91	0.77, 1.08
Slow Tablet	AUC	0.98	0.91, 1.05
	C _{max}	0.95	0.79, 1.15


Results: GZR arithmetic mean or median PK parameters for target, fast, slow tablets

Parameter	Target tablets		Fast tablets			Slow tablets			
	N	Arith mean	%CV,	N	Arith mean	%CV,	N	Arith mean	%CV, range
AUC _{0-t} , μM*hr	23	0.240	46.1	23	0.232	38.7	20	0.230	51.0
AUC∞, μM*hr	23	0.290	47.2	23	0.284	59.1	20	0.285	51.9
C _{max} , µM	23	0.0175	48.3	23	0.0165	56.8	20	0.0173	83.3
T _{max} , hr□	23	2.0	1, 6	23	3.0	1, 5	20	2.5	1, 5
t½, hr	23	38.43	39.0	23	40.44	41.2	20	41.56	40.5
☐Median and range are reported for T _{max}									

Results: concentration versus time profiles, for target, slow, fast GZR tablets

MEAN PLASMA CONCENTRATIONS FOLLOWING A 50 mg DOSE

- Background
- ➤ Objectives
- > Methods
- > Results
- >Conclusions

Conclusions

- ➤In vitro dissolution rate had no effect on GZR oral BA
- ➤ The three batches of GZR had comparable PK performance
- ➤ AUC and C_{max} showed no apparent trend with dissolution rate

Conclusions (cont'd)

- The dissolution safe space identified in the PK study informed a Q value and sampling time
- These specifications were proposed at the time of filing the application for marketing in Japan
- The Japanese MHLW accepted the proposal
- The CRS proposed by Merck as defined by the in vivo safe-space PK study were incorporated into the GZR 50-mg tablet stability and quality controls program

Contributors

- Heather Bell
- Luzelena Caro
- Paul Fackler
- Shu-Yee Foo
- Ed Feng
- Keith Gallicano
- Kimberly Gallagher
- Zifang Guo
- Andre Hermans
- Josh Hutt

- Filippos Kesisoglou
- Melanie Marota
- Craig McKelvey
- David Michaud
- Chrystal Miranda
- Chris Pridgen
- S. Asha Rajapakshe
- Ryan Riling
- Sandy Robertson
- Joe Yoon

