

PBPK Modeling and Simulations of Oral Drug Absorption/Food Effect/PPI /PBIVIVC: Opportunities and Challenges

Dissolution and Translational Modeling Strategies Enabling Patient-Centric Product Development University of Maryland's Center of Excellence in Regulatory Science and Innovation (M-CERSI) May 15th - May 17th 2017

www.pharmacy.umaryland.edu/dissolution2017

Tycho Heimbach, Marc Laisney, Tanay Samant, Mohamed Elmeliegy, Fan Wu, Imad Hanna, Wen Lin, Jin Zhang, Stefanie Dodd, Anh-Thu Nguyen-Trung, Hung Tian, Barbara Vogg, Stefania Beato, Sudhakar Garad, Somesh Choudhury, Xiao Ren, Martin Mueller-Zsigmondy, Heidi Einolf, Kenichi Umehara, Florence Hourcade-Potelleret, **Handan He**

Outlines

- Applications of PBPK absorption modeling tools
- Case examples:
- Prediction on PPI effects
- Formulation dependent PBPK
- Food food effect predictions
- Comparison of IVIVC vs PBIVIVC
- Biorelevant Permeability Challenges
- Overall recommendations

PBPK, Translational Biopharmaceutics

Class: according to BCS, BDDCS Note: PPI Effects can be dose dependent!

4

Successful PBPK models on PPI prediction and Label Impact

- Farydak has pH dependent solubility (BCS II). However, solubility is relatively high.
- Q: Will Proton Pump Inhibitors (PPI) impact Farydak Exposure?
- Should a Clinical PPI study be run?

Table 3-1 So su	lubility of (Panobinostat) lact bstance at 37.0°C (+/- 0.5°C), batch 07	tate, anhydrous drug /24011
Solution / buffer	Approximate solubility in mg/ml of solution at 37°C (± 0.5°C)	Corresponding maximum amount of drug soluble in 250ml of solution (in mg)
Water	4.775	1194
pH 1.2 (HCI)	1.017	254
pH 2.0 (HCI)	1.256	314
pH 4.5 (acetate)	4.771	1193
pH 6.0 (phosphate)	3.845	961
pH 6.8 (phosphate, simulated intestinal flu	0.261 iid)	65
pH 7.6 (phosphate)	0.064	16
(DSP5.2R5001203B)		19

Public domain:

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm http://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/205353Orig1s000 TOC.cfm

Clinical PPI study was waived based on PBPK modeling and simulations are used on labels

Projected absorption of 20 mg LBH589 vs. stomach pH in humans

(panobinostat) capsule

Absorption is not pH dependent over the pH range from 0.5 to 8.

Output figure from parameter sensitivity analysis using the ACAT absorption model of LBH589 within GastroPlus™

12.3 Pharmacokinetics

Absorption

The aqueous solubility of panobinostat is pH dependent, with higher pH resulting in lower solubility [see Description (11)]. Coadministration of FARYDAK with drugs that elevate the gastric pH was not evaluated in vitro or in a clinical trial; however, altered panobinostat absorption was not observed in simulations using physiologically-based pharmacokinetic (PBPK) models.

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm http://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/205353Orig1s000TOC.cfm

Figure 7-4

Outline

- Applications of PBPK modeling of formulation dependent exposure and BCS/BDDCS
- Case examples:
- Prediction on PPI effects
- Formulation dependent PBPK
- Food effect predictions

Compound E

- Comparison of IVIVC vs PBIVIVC
- Biorelevant Permeability Challenges
- Overall recommendations

Compound E Absorption Modeling

Modeling objectives

1. To assess BE equivalence/in-equivalence a priori knowing in vitro dissolution differences between early human CSF (capsule) and late development FMI (tablet)

Q: Will FMI formulation be equivalent to CSF?

2. To assess impact of stomach pH on Compound E absorption (e.g. possible effect of co-administered PPI)

Q: Will GI pH impact the extent of absorption?

In vitro data

а

No significant change in solubility with pH in bio-relevant media

- Slight pH-dependent solubility observed
 - High solubility at low pH (>2.4 mg/mL at pH 2 and 4.5)
 - ~3-fold decrease in solubility at pH 6.8 (0.8 mg/mL)
 - Solubility in bio-relevant media (FaSSIF) at pH 6.5 is equivalent to solubility at lower pH

Solvent	рН	Solubility at 37°C (mg/mL) ^a
HCI/KCI buffer	2.0	> 2.4 mg/mL
Acetate buffer	4.5	> 2.4 mg/mL
Phosphate buffer	6.8	0.8 mg/mL
Phosphate buffer	7.5	0.3 mg/mL
FaSSIF	6.5	> 2.4 mg/mL
FeSSIF	5.0	> 2.2 mg/mL

pH-Dependent Solubility

Low Clinical Relevance of pH-Dependent Solubility based on Low Dose Number

Drug (Max Dose)	рКа	Solubility	pH- dependent solubility	BCS / BDDCS class	Dose number (max dose/250 mL / lowest solubility)	Clinical relevance (AUC / Cmax)
Dasatinib (100 mg)	3.1, 6.8, 10.8	18 mg/mL at pH 2.6 to <0.001 mg/mL at pH 7.0 at 24 °C	Yes	II	560	43% / 42%
Nilotinib (400 mg)	2.1, 5.4	Slightly soluble (1–10 mg/mL) at pH 1.0, very slightly soluble (0.1–1 mg/mL) in water, at pH 2.0 and pH 3.0, and practically insoluble (<0.1 mg/mL) in buffer solutions of pH \ge 4.5	Yes	IV / II	160	34% / 27%
Axitinib (5 mg)	4.8	Solubility decreases from 1.8 mg/mL at pH 1.1 to 0.0002 mg/mL at 7.8	Probably not clinically applicable	II	100	15% / 40%
Imatinib (400 mg)	7.7	Freely soluble (100–1,000 mg/mL) up to pH 5.5, the solubility reduces at higher pH; lowest solubility 1 mg/mL	Yes	II	1.6	No effect
Everolimus (10 mg)	NA	Solubility in aqueous media is <0.01% (0.1 mg/mL) across the pH range 2–10	No	III / I	0.4	No study conducted
Ceritinib (750 mg)	4.1, 9.7	Highly soluble at pH 1 (11.9 mg/mL) and 2 (5.5 mg/mL); solubility decreases to 0.01 mg/mL at pH 6.0	Yes	IV	1000	76% / 79%
Palbociclib (125 mg)	NA	Slightly soluble (1.135 mg/mL) at pH 1 and 1.205 mg/mL at pH 4. Solubility decreases to 0.026 mg/mL at pH 6.8	Yes	NA	19.23	62% / 80% (Fasted) 13% / 41% (Fed)
Comp. E	5.5, 8.6	Highly soluble at pH 2.0 and 4.5; solubility decreases to 0.8 mg/mL at pH 6.8	Yes	IV	3-8	Unknown (Expected to be low based on dose number)

() NOVARTIS

Adapted from Budha et al., (2012) CPT 92(2):203-213. Palbociclib solubility data obtained from Sandoz.

PBPK Absorption Model

Phys Chem / Permeability properties (incl. moderate perm)

ary of input parameters for	ACAT model in humans	Compound	Gut Physiology-H	Hars	Phamacgkinetics	Sigulation		Graph
Used value	Source	Selected Compound		-	ver 3.0.0007			
		14 4	PH -	SI Trans	Time (h) = 3.232 Mean Abs Tim	e(h) = 1.023		1.1
		Current+ 20: Total + 35		MaxAbs	Doce (5+)= 6.962E+3 mg Max Abs Doce	(W) = 9.903E +2 mg	2	
1.954	570 C			1.1	Suppor Part			
-1 (indicating neutral species)								
pKa1: 8.6 (base); pKa2: 5.5 (base)		100		Docege	R Canada	Effective	Permeability	
	Adjusted to solubility vs pH profile			Form	Initial Dana Inst.	Source		
0.3 mg/mL at pH 7.5					Subsect and Desert land	-	Caco-2 Page Jon/s x 10"5	0.1800
900 sec	Default value in G+				Davies Interval Bit	0	Sin Pett x10"4 Phanan	0 9023
0.6297 * 10 ⁻⁵ cm ² /sec	Calculated from molecular weight in GastroPlus™ v9.0	Molecular Formula			Dose Volume (mL) 2	ē	Convert hom User Da	ta .
1.2	Default value in G+	Molecular Weight (g/hol);	-		pH for Reference Solubility: 7	5		
60 µm		logP (neutral) 1.954 @	off 1		Schubility (mg/mL @gH+7.5) 0	2	Biorelevant Solubilities	
		pKa Table			Mean Prophetion Time (sec) 3 Dill Comit June 224 x 10/50 0.622	0 7	Dose No. + 8.8	
0.1833		Enzyme Table			Drug Particle Denoty (p/mL)	2	Absorption No 1	773
0.9023	Converted from Permeability on Caco2	Transporter Table	1		Particle Size: PI+60.00, D+120.0	1	Dissolution No 17	.967
	1.954 -1 (indicating neutral species) pKa1: 8.6 (base): pKa2: 5.5 (base) 0.3 mg/mL at pH 7.5 900 sec 0.6297 * 10.5 cm ² /sec 1.2 60 µm 0.1833 0.9023	ary of input parameters for ACAT model in numans Used value Source 1.954 - -1 (indicating neutral species) - pKa1: 8.6 (base): - pKa2: 5.5 (base) Adjusted to solubility vs pH profile 0.3 mg/mL at pH 7.5 900 sec 900 sec Default value in G+ 0.6297 * 10.5 cm²/sec Calculated from molecular weight in GastroPtus™ v9.0 1.2 Default value in G+ 60 µm 0.1833 0.9023 Converted from Permeability on Caco2	ary of input parameters for ACAT model in humans Compound Used value Source Selected Compound - - - 1.954 - -1 (indicating neutral species) - pKa1: 8.6 (base): - pKa2: 5.5 (base) - Adjusted to solubility vs pH profile - 0.3 mg/mL at pH 7.5 - 900 sec Default value in G+ 0.6297 * 10.5 cm²/sec Calculated from molecular weight in GastroPlus ™ v9.0 Malecular Verget (g/noit) 1.2 Default value in G+ 60 µm - 0.1833 Converted from Permeability on Caco2 0.1833 Converted from Permeability on Caco2	ary of input parameters for ACAT model in humans Compound Used value Source Solected Compound 1.954 - -1 (indicating neutral species) - pKa1: 8.6 (base): pKa2: 5.5 (base) pKa2: 5.5 (base) Adjusted to solubility vs pH profile 0.3 mg/mL at pH 7.5 900 sec 0.6297 * 10.5 cm ² /sec Calculated from molecular weight in GastroPlus ^{TW} v9.0 1.2 Default value in G+ 60 µm Default value in G+ 0.1833 Converted from Permeability on Caco2 0.1833 Converted from Permeability on Caco2	ary of input parameters for ACAT model in humans Compared Gd PhysiologyHan Used value Source - - Solected Compound Gd PhysiologyHan 1.954 - - - - Compared Solected Compound 1.954 - - - - - - 1.954 - - - - - - pKa1: 8.6 (base): - - - - - pKa2: 5.5 (base) - - - - - 0.3 mg/mL at pH 7.5 - - - - - 900 sec Default value in G+ - - - - 0.6297 * 10 ° cm²/sec Calculated from molecular weight in GastroPtus ™ v9.0 - Malecular Formula - 1.2 Default value in G+ - - - - - 60 µm - - - - - - 0.1833 - - - - - - 0.1833 - Converted from Permeability on Caco2 Transporter Table -	ary of input parameters for ACAT model in humans Compound Gut Physiolog-Hum Phamacplatetics Used value Source -	ary of input parameters for ACAT model in numans Compound Phamaginetics Signation Used value Source -	ary of input parameters for ACAT model in humans Compound Guardeness Phenacylanetics Siguidion Used value Source

pH	Buffer substances	Solubility [mg/ml]	Bile Salt Concentration
pH 2	HCI/KCI	>2.4 *	
pH 4.5	Acetate	>2.4*	
pH 6.8	Phosphate	0.8	-
pH 7.5	Phosphate	0.3	-
pH 6.5	FaSSiF-V1 b	>2.4	3 mM
pH 5	FeSSiF-V1 4	>2.2	15 mM

lote	evant	In	Vitro	Solubilities	
				005	

	SUF	Fassir	ressir
pH:	1.2	6.5	5
Bile Salt Conc (mM);	0	3	15
Solubility (mg/mL):	0	2.4	2.2

U NOVARTIS

E-COIE

~

Z-factor dissolution (Takano)

 Enable to consider the change of Compound E drug product dissolution rate vs pH during the drug transit in the gut Z-factor vs pH for capsule
Z-factor vs pH for tablets

->pH dependent dissolution rate

->'slower' dissolution for the tablet

PBPK model built in GastroPlus[™]

PK was fitted with a 2 comp model using PKPlus

- default gut physiology for humans at fasted state (Human Physiological Fasted) and the Absorption Scaling Factors (ASF) model named OptlogD Model SA/V 6.1
- Johnson dissolution model

PK model qualification

 PK model established for Capsule in HV simulate correctly PK in Patients, PK with Tablets, using either Johnsson or Z-factor models

Capsule – HV – Johnson model

Capsule – HV – Z factor model

Tablet – HV – Z factor model

Absorption Kinetics – Diagnostic Plots Dissolution controlled or permeability controlled?

- Compound E: permeabilitycontrolled absorption
- Example: dissolutioncontrolled absorption

BE study outcome *Predicted versus observed plasma concentration profiles*

PBPK PSA Influence of stomach pH on Compound E absorption

- Change of stomach pH has no impact on drug absorption (rate and extent)
- Consequently, no predicted effect on PK

NOVARTIS

PK model qualification

Capsule – HV – Johnson model

 PK model established for Capsule in HV simulate correctly PK in Patients, PK with Tablets, using either Johnsson or Z-factor models

Capsule - Patients - Johnson model

Prediction of Food effect, Compound E

Simulation Fasted State

High and similar solubility measured in FaSSIFv1 and FeSSIFv1

Food Effect	Cmax	AUC0-168h
prediction	(ng/mL)	(ng.h/mL)
Fasted	823.23	12090
Fed	764.29	12130
% change	-7	0.3

It was predicted that Food would not affect PK, with:

- Only slight decrease on Cmax
- No change in AUC0-168h

Compound E showed no clinically significant food effect

- Applications of PBPK modeling of formulation dependent exposure and BCS/BDDCS
- Case examples:
- Prediction on PPI effects
- Formulation dependent PBPK
- Food effect predictions
- Comparison of IVIVC vs PBIVIVC
- Biorelevant Permeability Challenges
- Overall recommendations

Compound F

Compound F - Food Effect

- High Solubility, > 10 mg/mL, Do < 1</p>
- High Absorption > 80%, F > 80%, Fa > 80%

Caco-2 low, no pgp involvement

- High Metabolism mainly metabolized
- Rat BDDCS I
 - No biliary excretion (Rat)
- No Adsorption/complexation issues
- Q: Can Food effect be predicted?
- No Food effect expected Predictable Outcome!

NOVARTIS

Predicted vs Observed Food Effect, BCS I Drug in Human

Food Effect Can be predicted via ACAT model

Journal of Pharmaceutical Sciences 105 (2016) 2723-2734

U NOVARTIS

23 | Heimbach, He

BCS I: Predicted vs Observed Food Effect in Human

Journal of Pharmaceutical Sciences 105 (2016) 2723-2734

U NOVARTIS

90% Probability

Human PBPK model

Fasted

Journal of Pharmaceutical Sciences 105 (2016) 2723-2734

🔱 NOVARTIS

- Applications of PBPK modeling of formulation dependent exposure and BCS/BDDCS
- Case examples:
- Prediction on PPI effects
- Formulation dependent PBPK
- Food effect predictions
- Comparison of IVIVC vs PBIVIVC
- Biorelevant Permeability Challenges
- Overall recommendations

PB-IVIVC example NVS6 (BCS I): PK predictions in dogs by PB-IVIVC

PBPK model for immediately release vs. slow release vs. fast release

	Cmax ng/mL	AUC0-24h ng.h/mL	F %
IR	3280	8060	100
FR (fast ER)	1350	5340	66
SR (slow ER)	715	3860	46

U NOVARTIS

AAPS 2016

PB-IVIVC example NVS6: In vitro and in vivo dissolution profiles in dogs

Dissolution

In vivo Dog PK

UNOVARTIS

AAPS 2016

PB-IVIVC example NVS6: Regional absorption by PB-IVIVC

Reginal absorption: Immediately release vs. slow release vs. fast release

29

PB-IVIVC example NVS6: Comparisons of conventional IVIVC vs PB-IVIVC

PB-IVIVC showed better prediction compared to conventional IVIVC

Opportunities and challenges of modeling

A collective and multi-disciplinary paradigm

Applications of PBPK models:

Apply to selected compounds starting from CSP/sPOC

Applications of combining conventional IVIVC with PB-IVIVC Inform formulation – need for special formulations to optimize exposure

Investigate knowledge gaps in disposition and
absorption mechanisms (e.g. low F is due to low absorption or high first pass effects?)

Translate PBPK models from animals to human/patients/special populations

For internal facilitation/informed decision making /bioequivalent (BE) evaluation

For **biowaiver**, if conventional IVIVC is challenging due to lack of data, it is suggested to also apply PB-IVIVC/virtual bioequivalence trial, e.g. MR development

- Applications of PBPK modeling of formulation dependent exposure and BCS/BDDCS
- Case examples:
- Prediction on PPI effects
- Formulation dependent PBPK
- Food effect predictions
- Comparison of IVIVC vs PBIVIVC
- Biorelevant Permeability Challenges
- Overall recommendations

Drug U, Compound X

🔱 NOVARTIS

Biorelevant Permeability – Negative Food Effect Can Be Well Predicted Using PBPK Modeling

Biorelevant Permeability

Modified from Dressman et al., (2000) EJPS, 11: S73-80

SIF: simulated gastric fluid (lecitin, taurocholate, others)

Compound X Physicochemical and BDDCS data

Property		_	High Solubility (Dose # ≤1)	Low Solubility (Dose # >1)
Melting point logP / logD6.8	high > 4	۲ Pility P	Class 1 ←→ T _{max}	Class 2 F ↑ T _{max} ↑ ↓ ↔
Thermo. solubility [mg/mL]: pH 1 pH 6.8	0.003	Hig Permea	Preclinical F or F _a > 85% Extensive metabolism (< 40% ntact drugs in excreta after IV)	Preclinical F or F _a < 85% Extensive metabolism (< 40% intac drugs in excreta, after IV) Efflux transporter effects
Sim. fluids stability (8 h, 37°C) and solubility [mg/mL]: Fassif Fessif Permeability:	Stable 0.009 0.262 Mod	Low Permeability	Class 3 T Tmax T Negative FE likely Preclinical F or $F_a < 85\%$ Poor metabolism (> 60% intact lrug in excreta after IV) Renal and/or biliary elimination boornive transporter effects	Class 4 F ① ↓ → T _{max} ① ↓ ← FE direction variable Preclinical F or F _a < 85% Poor metabolism (> 60% intact dru in excreta after IV) Renal and/or biliary elimination Absorptive, efflux transporter effect
(1) log PAMPA	Pred. FA = 40 %			Compound X Rat BDDCS 4 ➤ ~60% intact ➤ Fabs < 65%
BCS, BDDCS	Class II, IV			

Biorelevant Permeability

Modified from Dressman et al., (2000) EJPS, 11: S73-80

SIF: simulated gastric fluid (lecitin, taurocholate, others)

Compounds in Biorelevant Permeability Assay

Assessment for micellar complexation

IDAS Biorelevant Flux Data, Compound X

Faster dissolution in fed state media, but permeation is low

PBPK simulations food effect for Compound X

Using permeability difference of ~4-6 (FaSSIF vs. FeSSIF) in C2BBe1 cells

- PBPK model utilized in vitro biorelevent permeability data
- Negative food effect was simulated with reduced in vivo permeability input

Compound X food effect assessments (Simcyp) permeability difference (FaSSIF vs. FeSSIF) in C2BBe1 cells

The green line is the simulated data

40

The difference in permeability for compound X in the C2BBe1 cells can be used to predict the magnitude of reduced exposure change of the high fat meal (Fed/fasted ratios ~ 0.3).

Discussions Points

For PBPK absorption models, conduct PSA for critical parameters

Evaluate absorption kinetics diagnostic plots

- Takano z-factor model allows multiple pH dissolution profile data and can be included in exposure predictions, when profiles are available
- Food effect can be predicted for well characterized BCS/BDDCS I/II compounds, especially when human fasted date
- Biorelevant Permeability with Fassif/Fessif can identify potential for potential bile acid complexation
- Biorelevant Permeability, biorelevant solubility are important as PBPK inputs

PPI: BCS II weak bases can show reduced AUC with high Dose number (>100)

Budha, Benet, Ware, 2012

Table 3 Effect of acid-reducing agents on the oral absorption of targeted anticancer agents

		Mean change		Dose		
Drug (dose)	Acid-reducing agent	AUC	Cmax	Number, Do	Comments	Reference
Dasatinib (50 mg)	Famotidine (40 mg) 10 hours prior to dasatinib Famotidine (40 mg) 2 hours after dasatinib	61% ↔	↓63% ↔		UC ₀₋₁₂	17
Dasatinib (50 mg)	Maalox 30 ml 2 hours prior to dasatinib Maalox 30 ml coadministered with dasatinib	↓ 55%	↑26% ↓58%	200	UC ₀₋₁₂	17
Dasatinib (100 mg)	Omeprazole (40 mg) daily for 5 days and on day 5 with dasatinib	43%	↓42%	_	AUC _{inf}	18
Erlotinib (150 mg)	Omeprazole (40 mg) daily for 7 days	46% 58% ^a	↓61% ↓69%ª	NC	rimary tabolite ^a	8,63
Erlotinib (150 mg)	Ranitidine 300 mg daily for 5 days and erlotinib 150 mg single dose 2 hours after ranitidine dose on third day	.33%	↓54%	-		8,63
Erlotinib (150 mg)	Ranitidine 150 mg b.i.d. for 5 days and erlotinib 150 mg single dose 2 hours before and 10 hours after ranitidine on third day	15%	↓17%	-		8,63
Gefitinib (250 mg)	Two oral doses of 450 mg ranitidine (13 hours and 1 hour before 250 mg of gefitinib) followed by sodium bicarbonate to maintain gastric pH above 5 for 8 hours	44%	↓70%	- 1000		21
Imatinib (400 mg)	Omeprazole (40 mg) daily for 5 days and on day 5 with imatinib		\leftrightarrow	1.6		23
lmatinib (400 mg)	Maalox Max (20 ml) 15 minutes before imatinib		\leftrightarrow	_		24
Lapatinib (1,250 mg)	Esomeprazole (40 mg) daily for 7 days at bedtime	26%	NA	>1000		27
Nilotinib (400 mg)	Esomeprazole (40 mg) daily for 6 days and on day 6 with nilotinib	34%	↓27%	>300		29
Axitinib (5 mg)	Rabeprazole (20 mg) q.d.	15%	↓40%	100		50
		-		_		

AUC, area under the curve, C_{max}, peak plasma concentration; NA, not applicable.

^aPrimary metabolite data.

The FDA does not require the use of a particular PBPK modeling software. Because of substantive differences in software models and versions, sponsors should include information on the PBPK modeling software. Table 1 below highlights the information that should be included regarding commercial PBPK modeling software (commercial PBPK platform) versus custom modeling software (e.g., commercial software that has been modified with custom codes or otherwise revised for the purpose of PBPK modeling).

	PBPK	Models
Suggested Software Information	Custom Modeling Software	Commercial PBPK Platform
Name and version of the software	Yes	Yes
Schematic view of model structure and differential equations based on established theoretical or biological basis	Yes	Optional
Parameterization of system information and sources of parameter values	Yes	Optional
Table of drug-dependent parameters for the investigational drug of interest, including names, values, units, and sources of the parameters, prediction algorithms, and assumptions being made	Yes	Yes
Literature references and the sponsor's prior experience/knowledge in using the software for PBPK modeling (to help the reviewer understand how PBPK models are coded using the modeling software that was tested)	Yes	Yes
Manuals on model implementation of the software (to be provided as supporting documents)	Yes	Optional
Library system models (e.g., virtual population), including justifications for any modifications made to the model's physiological parameters by the sponsor	Not applicable	Yes
Library drug models, including justifications for any modifications to the model made by the sponsor and information on model verification	Not applicable	Yes

Table 1. Software Information for PBPK Modeling