

The Utility of in silico PBPK Absorption Modeling and Simulation as a Tool to Develop Bio-Predictive Dissolution Methods

Liang Zhao, PhD Eleftheria Tsakalozou, PhD

Division of Quantitative Methods & Modeling

Office of Research and Standards, Office of Generic Drugs

CDER, FDA

The University of Maryland CERSI-FDA May 16th, 2017, Baltimore, MD

Outline

- Introduction
- Impacts made by Physiologically based PK modeling at OGD/FDA
- Case Presentation
 - Oxybutynin HCl ER Tablets
- Summary
- Relevant GDUFA funded research/contracts

Quantitative Tool Sets

Modeling and Simulation Impact Various Regulatory Activities in the Office of Generic Drugs (Calendar Year 2016)

Туре	No.	Examples
ANDA Reviews & Citizen petitions	22	Implement clinical relevant PK metrics for BE assessment
Pre-ANDA interactions (including CC)	26	 Development of BE criteria for analgesics Assessment of BE standards for GI locally acting products Simulation of in vivo alcohol dose dumping studies
BE Guidances	31	Simulations for the development of BE criteria for HVDs and NTI drugs
Regulatory Research Studies	30	Pharmacokinetic(PK)/Pharmacodynamic (PD) modeling and simulation to determine the appropriate study design and evaluate clinical endpoint sensitivity for BE assessment

ANDA: abbreviated new drug application; BE: bioequivalence: CP: citizen petition; CC: controlled correspondence; GI: gastrointestinal; HVD: highly variable drugs; NTI: narrow therapeutic index.

Modeling and Simulation for Generic Drug Development

- OGD uses modeling and simulation for guidance development and for regulatory decisions regarding novel approaches for BE assessment
- The generic industry is encouraged use Model-Informed Drug Development (MIDD) before they propose novel methods in an ANDA to support new BE approaches
- Vision: Accelerate development and review of complex and locally acting products by modeling and simulation

PBPK Models

- Oral absorption models are established and commercially available and are useful to FDA and the generic drug industry
- Non-oral absorption models are at an earlier stage of development but are critical to FDA and the generic drug industry in introducing new approaches for bioequivalence assessment of locally acting drugs

Factors Affecting Oral Absorption

FDA

Physiologically Based Models

Vitreous Gel(body)

Choroid

Macula

Retina

Live

Gallbladder

Sphincter of Oddi

sphincters

ppen & Stanton: Berne and Levy Physiology, 6th Edition. syright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights #

Optic Nerve

General PBPK Model Applications for Generic Products

Increasing trends in using PBPK models to support regulatory decision making in the realm of generic drug development

BE: bioequivalence; PPI : proton pump inhibitor; GI: gastrointestinal ; DDI: drug-drug interaction

Highlights of PBPK Impacts (Year 2016)

Category	Example Drug	Impact on regulatory decision making
Dissolution	Fingolimod, Oxybutynin	Risk assessment for not conducting in vivo studies for lower strength generic products when bioequivalence has been established at higher strengths
Product quality	Prasugrel	Conclusion that less than 20% free base in prasugrel HCl product ensures in vivo BE of the generic product including subjects on PPI
Mechanism change risks	Venlafaxine	Model predicted that a delayed onset of venlafaxine release up to 4 h predicted to demonstrate BE for the openable matrix release mechanism against the osmotic pump based release mechanism
PPI effect	Several ER products	Risk assessment of changing drug release to a PH dependent mechanism
PK metrics determination	Mesalamine Suppositories	Determination of PK metrics for BE evaluation
Alcohol dose dumping	Metformin Hydrochloride ER Tablet	Assessment of alcohol dose dumping potential
Virtual simulation	Methylphenidate	Assessment of using PBPK model in combination with a two way crossover study to meet the guidance recommendation of a four way crossover study for BE assessment

Case: Oxybutynin HCl ER Tablets

Intended Purpose of the Model

- To quantitatively describe the delay in oxybutynin absorption when oxybutynin is formulated as an enteric-coated matrix tablet compared to an OROS[®] tablet
- To assess the risk of not conducting BE study for the lower strengths of oxybutynin extended release products
- Model Development and Parameter Estimation
 - o In vivo dissolution

Oxybutynin Properties

- Relief from urinary and bladder difficulties (frequent urination, inability to control urination)
- High solubility, High permeability (BCS I)
- pKa: 7.88 (base)
- logP: 4.87
- Solubility= 0.29 mg/mL (pH=9.39)
- Peff= 2.67 x 10⁻⁴ cm/sec (human)
- Half-life: 2-3 h
- Metabolized by CYP3A4 (gut, liver)
- No reported food effect

Formulation Attributes

Ditropan XL[®] Osmotic pump/OROS: controlled rate drug delivery system pH or gastrointestinal motilityindependent

Hydrophilic Matrix Tablet with enteric coating

PBPK Absorption Modeling Approaches

FDA

Model Development and Sensitivity Analysis

GastroPlus:

Osmotic pump, RLD

ACAT coupled with one-compartment model

IV and PO data from IR formulations

Model output: predicted mean concentration profile

Model Development and Sensitivity Analysis

Sensitivity Analysis

FDA

Model Predictions Under Fasted and Fed State

- Absence of food effect with the osmotic pump formulation
- Delay is absorption in the presence of food with the entericcoated matrix formulation
- Double peaks observed with the enteric-coated matrix formulation

FDA

Models Described Observed Data Reasonably Well

Dose level: 15 mg oxybutynin, PK data extracted from 5 ANDAs submitted to USFDA

Fasting

Fed

15 mg, pH 4.5, study 1, prediction

15 mg, pH 6.8, study 2, prediction

15 mg, study 1, observation

15 mg, study 2, observation

80

۰

60

IVIVR Development

GastroPlus: IVIVCPlus®

6

4

2

0

Prediction Errors (%)					
	Cmax (ng/mL)		AUC (ng/mL*h)		
Study	1	2	1	2	
Wagner- Nelson	24.1	17.8	9.6	-7.2	
МАМ	34.6	25.9	25.1	9.8	

40

Time (h)

20

Predictions Leveraging the Developed IVIVR

GastroPlus: IVIVCPlus®

Limitations:

- QC dissolution
- Formulations of different release rates
- Internal and external validation

Risk Assessment for Not Conducting In Vivo Studies in Lower Strength Oxybutynin Generic Products

20

40

Time (h)

60

80

- products leveraging
 - developed IVIVR. 22

Case Conclusions

- In vitro dissolution does not appear to be predictive of in vivo drug release
 - Additional step for conversion to bio-relevant dissolution profile
 - Additional work is needed to identify bio-predictive dissolution profile condition
- Developed mechanistic absorption pharmacokinetic models
 - described well oxybutynin disposition following administration of oxybutynin formulated as an OROS or enteric-coated matrix extended release formulations under fasting and fed conditions.
 - captured the multiple peak PK profile observed with enteric-coated matrix formulations.
- Established IVIVR
 - can be utilized for risk assessment of not conducting in vivo studies for lower strength generic products when bioequivalence has been established at higher strengths.

An Integrated Modeling System for Drug Development

Summary

- At ANDA stage, quality control dissolution profiles and PK profiles for both IV and oral routes of administration are usually available
- In vivo dissolution profile can be predicted via PBPK based deconvolution
- Comparison of in vitro vs in vivo drug release is the first step towards identifying bio-predictive dissolution conditions
- When bio-predictive dissolution conditions cannot be established, a function can be used to convert a discriminatory in vitro dissolution profile to its corresponding in vivo dissolution profile when developing an IVIVC or IVIVR in order to predict in vivo PK

Acknowledgement

- Office of Research and Standards, OGD
 - Rob Lionberger, PhD
 - Susie Zhang, PhD
 - Hong Wen, PhD
 - Dajun Sun, PhD
 - Zhanglin Ni, PhD
 - Jianghong Fan, PhD
 - DQMM Colleagues

- Office of Bioequivalence, OGD
- Office of Clinical Pharmacology, OTS
- Office of Pharmaceutical Quality
- Office of New Drugs

FD/

Relevant GDUFA Funded Grants/Contracts (1)

	Grants/Contracts	Institute	Start	End	Status
	Evaluation of Clinical and Safety Outcomes Associated with Conversion from Brand-Name to Generic Tacrolimus products in high risk Transplant Recipients	University of Cincinnati	9/2013	3/2017	Ongoing
BE investigations	Bioequivalence and Clinical Implications of Generic Bupropion	Washington University	9/2013	8/2017	Ongoing
	Assessing Clinical Equivalence for Generic Drugs Approved By Innovative Methods	Brigham & Women's Hospital	9/2013	9/2015	Ongoing
	Development of an in vitro dissolution technique to understand the clinical based outcomes of orally inhaled drug particles	University of Bath	9/2013	10/2016	Ongoing
New BE metrics (pAUC)	Pharmacometric modeling and simulation for evaluation of bioequivalence for leuprolide acetate injection	University of Utah	9/2015	8/2018	Ongoing
	Pharmacokinetic pharmacodynamic studies of methylphenidate extended release products in pediatric attention deficit hyperactivity disorder	Massachusetts General Hospital	9/2014	8/2017	Ongoing
	Pharmacometric modeling and simulation for evaluation of bioequivalence for leuprolide acetate injection	University of Maryland	9/2014	8/2017	Ongoing
	Pharmacokinetics study of opioid drug product following insufflation of milled drug products	Vince & Associates Clinical Research	9/2015	9/2017	Ongoing
Physiologically based models for systemic and locally acting products	Structural nested models for assessing the safety and effectiveness of generic drugs	Johns Hopkins University	9/2015	8/2018	Ongoing
	Enhancing the reliability, efficiency, and usability of Bayesian population PBPK modeling	University of Colorado	9/2016	8/2018	Ongoing
	Novel Method to Evaluate Bioequivalence of Nanomedicines	Nanotechnology Characterization Lab	5/2016	4/2018	Ongoing
	An integrated multiscale-multiphysics modeling and simulation of ocular drug delivery with whole-body pharmacokinetic response	CFD Corporation	9/2014	8/2017	Ongoing
	Investigate the sensitivity of pharmacokinetics in detecting differences in physicochemical properties of the active in suspension nasal products for local action	University of Florida	9/2013	11/2017	Ongoing

Relevant GDUFA Funded Grants/Contracts (2 PDA

Nodel based Bit assessment for PK and performanceCorrelation of Mesalamine Pharmacokinetics with Local Availability University of Paris9/20139/20130/2017OngoingModel based Bit assessment for PK and performanceA model and system based bioequivalence statistical approach to efficacy and safety questions related to generic substitutionUniversity of Paris9/20148/2018OngoingData-fusion based platform development of population PKPD modeling and statistical analysis for bioequivalence assessment of long-acting injectable productsUniversity of Massachusetts9/20148/2018OngoingPharmacokinetic and pharmacodynamic (PK-PD) studies of cardiovascular drugs develop bioequivalence assessment of Oral Solid Dosage formsUniversity of Michigan9/20148/2017OngoingPostmarketing Surveillance of Generic Drug Usage and Substitution PatternsUMD9/201311/2017OngoingPostmarketing Surveillance of Generic Drug Usage and Substitution PatternsUMD9/20148/2017OngoingComputational drug delivery: leveraging productsUniversity of Michigan9/201411/2017OngoingPostmarketing Surveillance of Generic Drug Usage and Substitution PatternsUMD9/201311/2017OngoingComputation Structure Usage and Substitution PatternsUMD9/20148/2018OngoingComputation Structure Usage and Substitution PatternsUMD9/20149/20140/0018Computation Structure Usage and Substitution PatternsUMD9/20149/20140/0018Computation Structur		Grants/Contracts	Institute	Start	End	Status
Model based Bis evaluation of model-based bioequivalence statistical approaches for sparse design PK studies University of Paris 9/2016 9/2017 Ongoing Model and system based approach to efficacy and safety questions related to generic substitution University of Florida 9/2015 8/2018 Ongoing PK and performance Data-fusion based platform development of population PKPD modeling and statistical analysis for bioequivalence assessment of long-acting injectable products University of Massachusetts 9/2015 8/2018 Ongoing Pharmacokinetic and pharmacodynamic (PK-PD) studies of cardiovascular drugs University of Florida 9/2015 9/2018 0ngoing Pharmacokinetic and pharmacodynamic (PK-PD) studies of cardiovascular drugs University of Florida 9/2015 9/2018 0ngoing Pharmacokinetic and pharmacodynamic (PK-PD) studies of cardiovascular drugs University of Florida 9/2015 0ngoing Pharmacokinetic and pharmacodynamic (PK-PD) studies of cardiovascular drugs University of Florida 9/2015 0ngoing Pharmacokinetic and pharmacodynamic (PK-PD) studies of cardiovascular drugs University of Maryland 9/2015 0ngoing Computational drug delivery: leveraging predictive models to decolo ploequivalance stats fits for adverse outcomes related to U	Model based BE assessment for PK and performance	Correlation of Mesalamine Pharmacokinetics with Local Availability	University of Michigan	9/2013	9/2015	Completed
Model based Based assessment for PK and performanceA model and system based approach to efficacy and safety questions related to generic substitutionUniversity of Florida9/20148/2018OngoingPK and performanceData-fusion based platform development of population PKPD modeling and statistical analysis for bioequivalence assessment of long-acting injectable productsUniversity of Massachusetts9/20148/2018OngoingPharmacokinetic and pharmacodynamic (PK-PD) studies of cardiovascular drug develop bioequivalent generic long-acting injectionsUniversity of Florida9/20138/2018OngoingPharmacokinetic and pharmacodynamic (PK-PD) studies of cardiovascular drug develop bioequivalent generic long-acting injectionsUniversity of Michigan9/201311/2017OngoingPostmarketing Surveillance of Generic Drug Usage and Substitution Patterns 		Evaluation of model-based bioequivalence statistical approaches for sparse design PK studies	University of Paris	9/2016	9/2017	Ongoing
assessment for PK and performanceData-fusion based platform development of population PKPD modeling and statistical analysis for bioequivalence assessment of long-acting injectable productsUniversity of Massachusets9/20158/2018OngoingPharmacokinetic and pharmacodynamic (PK-PD) studies of cardiovascular drugsUniversity of Florida9/20148/2017OngoingComputational drug delivery: leveraging predictive models to develop bioequivalent generic long-acting injectionsOrono, Inc.9/20139/20180ngoingPrediction of In Vivo Performance for Oral Solid Dosage FormsUniversity of Michigan9/201311/2017OngoingPostmarketing Surveillance of Generic Drug Usage and Substitution PatternsUMD9/201311/2016OngoingComparative Surveillance of Generic Drug Usage and Substitution PatternsUniversity of Marshfield Clinic, Inc.9/20149/20140ngoingComparative Surveillance of Generic Drugs by Machine LearningMarshfield Clinic, Inc.9/20149/20140ngoingCharacterization of epilepsy patients at-risk for adverse outcomes related to switching antiepileptic drug productsUniversity of Florida9/20148/2018OngoingNovel approaches for confounding control in observational studies of generic drugsDuke University of Florida9/20138/2018OngoingClinical practic data to aid narrow therapeutic index drug classificationDuke University of Florida9/20133/2015CompletedNTI classificationTherapeutic index evaluation for narrow therapeutic index (NTI) drugsJohns Hopkins Unive		A model and system based approach to efficacy and safety questions related to generic substitution	University of Florida	9/2014	8/2018	Ongoing
Pharmacokinetic and pharmacodynamic (PR-PD) studies of cardiovascular drugsUniversity of Florida9/20148/2017OngoingComputational drug delivery; leveraging predictive models to develop bioequivalent generic long-acting injectionsQrono, Inc.9/201311/2017OngoingPrediction of In Vivo Performance for Oral Solid Dosage FormsUniversity of Michigan9/201311/2017OngoingPostmarketing Surveillance of Generic Drug Usage and Substitution PatternsUMD9/201310/2015CompletedBase IDIQ for Postmarket Bioequivalence StudyBiopharma Services USA5/20165/2017OngoingComparative Surveillance of Generic Drug by Machine LearningMarshfield Clinic, Inc.9/201311/2016OngoingCharacterization of epilepsy patients at-risk for adverse outcomes related to switching antiepileptic drug productsUniversity of Florida9/20149/2017OngoingNovel approaches for confounding control in observational studies of generic drugsDuiversity of Florida9/20158/2018OngoingNTI classificationClinical practice data to aid narrow therapeutic index drug classificationDuke University9/20133/2015CompletedNTI classificationTherapeutic index evaluation for narrow therapeutic index (NTI) drugsJohns Hopkins University9/20148/2017OngoingNTI classificationPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugsJohns Hopkins University9/20148/2017OngoingNTI c		Data-fusion based platform development of population PKPD modeling and statistical analysis for bioequivalence assessment of long-acting injectable products	University of Massachusetts	9/2015	8/2018	Ongoing
Computational drug delivery; leveraging predictive models to develop bioequivalent generic long-acting injectionsQrono, Inc.9/20159/2018OngoingPrediction of In Vivo Performance for Oral Solid Dosage FormsUniversity of Michigan9/201311/201OngoingPostmarketing Surveillance of Generic Drug Usage and Substitution PatternsUMD9/201310/2015CompletedBase IDIQ for Postmarket Bioequivalence StudyBiopharma Services USA5/20165/2017OngoingComparative Surveillance of Generic Drugs by Machine LearningMarshfield Clinic, Inc.9/20149/2013OngoingCharacterization of epilepsy patients at-risk for adverse outcomes related to switching antiepileptic drug productsUniversity of Maryland9/20148/2018OngoingNotel approaches for confounding control in observational studies of generic drugsDuke University of Florida9/20138/2018OngoingNTI classificationClinical practice data to aid narrow therapeutic index drug classificationDuke University9/20133/2015CompletedNTI classificationTherapeutic index evaluation for tacrolimus and levetiracetamJohns Hopkins University9/20148/2017OngoingNTI classificationPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugsUniversity of Maryland9/20148/2017OngoingOngoing classificationDust pharma Services USAJohns Hopkins University9/20148/2015CompletedEffect of Therapeutic Clas		Pharmacokinetic and pharmacodynamic (PK-PD) studies of cardiovascular drugs	University of Florida	9/2014	8/2017	Ongoing
Prediction of In Vivo Performance for Oral Solid Dosage FormsUniversity of Michigan9/201311/2017OngoingPostmarketing Surveillance of Generic Drug Usage and Substitution PatternsUMD9/201310/2015CompletedBase IDIQ for Postmarket Bioequivalence StudyBiopharma Services USA5/20165/2017OngoingComparative Surveillance of Generic Drugs by Machine LearningMarshfield Clinic, Inc.9/201311/2016OngoingCharacterization of epilepsy patients at-risk for adverse outcomes related to switching antiepileptic drug productsUniversity of Maryland9/20149/2017OngoingA model and system based approach to efficacy and safety questions related to generic substitutionUniversity of Florida9/20138/2018OngoingNovel approaches for confounding control in observational studies of generic drugsDuke University9/20139/20148/2018OngoingInterapeutic index evaluation for tacrolimus and levetiracetamJohns Hopkins University9/20133/2015CompletedPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugsUniversity of Maryland9/20148/2017OngoingEffect of Therapeutic Class on Generic Drug SubstitutionsJohns Hopkins University9/20148/2017Ongoing		Computational drug delivery; leveraging predictive models to develop bioequivalent generic long-acting injections	Qrono, Inc.	9/2015	9/2018	Ongoing
Postmarketing Surveillance of Generic Drug Usage and Substitution PatternsUMD9/201310/2015CompletedBase IDIQ for Postmarket Bioequivalence StudyBiopharma Services USA5/20165/2017OngoingComparative Surveillance of Generic Drugs by Machine LearningMarshfield Clinic, Inc.9/201311/2016OngoingCharacterization of epilepsy patients at-risk for adverse outcomes related to switching antiepileptic drug productsUniversity of Maryland9/20148/2018OngoingA model and system based approach to efficacy and safety questions related to generic substitutionUniversity of Florida9/20148/2018OngoingNovel approaches for confounding control in observational studies of generic drugsDuke University9/20139/20158/2018OngoingPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling 		Prediction of In Vivo Performance for Oral Solid Dosage Forms	University of Michigan	9/2013	11/2017	Ongoing
Post market evaluationBase IDIQ for Postmarket Bioequivalence StudyBiopharma Services USA5/20165/2017OngoingPost market evaluationComparative Surveillance of Generic Drugs by Machine LearningMarshfield Clinic, Inc.9/201511/2016OngoingCharacterization of epilepsy patients at-risk for adverse outcomes related to switching antiepileptic drug productsUniversity of Maryland9/20149/2017OngoingA model and system based approach to efficacy and safety questions related to generic substitutionUniversity of Florida9/20148/2018OngoingNovel approaches for confounding control in observational studies of generic drugsBrigham & Women's Hospital9/20138/2018OngoingPopulation pharmacokinetic and narrow therapeutic index drug classificationDuke University9/20133/2015CompletedPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugsUniversity of Maryland9/20148/2017OngoingEffect of Therapeutic Class on Generic Drug SubstitutionsJohns Hopkins University9/20148/2017Ongoing		Postmarketing Surveillance of Generic Drug Usage and Substitution Patterns	UMD	9/2013	10/2015	Completed
Post market evaluationComparative Surveillance of Generic Drugs by Machine LearningMarshfield Clinic, Inc.9/201511/2016OngoingPost market evaluationCharacterization of epilepsy patients at-risk for adverse outcomes related to switching antiepileptic drug productsUniversity of Maryland9/20149/2017OngoingA model and system based approach to efficacy and safety questions related to generic substitutionUniversity of Florida9/20148/2018OngoingNovel approaches for confounding control in observational studies of generic drugsBrigham & Women's Hospital9/20138/2018OngoingNTI classificationClinical practice data to aid narrow therapeutic index drug classificationDuke University9/20133/2015CompletedPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugsUniversity of Maryland9/20148/2017OngoingEffect of Therapeutic Class on Generic Drug SubstitutionsJohns Hopkins University9/20144/2017Ongoing		Base IDIQ for Postmarket Bioequivalence Study	Biopharma Services USA	5/2016	5/2017	Ongoing
Post market evaluationCharacterization of epilepsy patients at-risk for adverse outcomes related to switching antiepileptic drug productsUniversity of Maryland9/20149/2017OngoingA model and system based approach to efficacy and safety questions related to generic substitutionUniversity of Florida9/20148/2018OngoingNovel approaches for confounding control in observational studies of generic drugsBrigham & Women's Hospital9/20138/2018OngoingClinical practice data to aid narrow therapeutic index drug classificationDuke University9/20133/2015CompletedTherapeutic index evaluation for tacrolimus and levetiracetamJohns Hopkins University9/20148/2017OngoingPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugsUniversity of Maryland9/20148/2017OngoingEffect of Therapeutic Class on Generic Drug SubstitutionsJohns Hopkins University9/20144/2017Ongoing		Comparative Surveillance of Generic Drugs by Machine Learning	Marshfield Clinic, Inc.	9/2015	11/2016	Ongoing
A model and system based approach to efficacy and safety questions related to generic substitutionUniversity of Florida9/20148/2018OngoingNovel approaches for confounding control in observational studies of generic drugsBrigham & Women's Hospital9/20158/2018OngoingClinical practice data to aid narrow therapeutic index drug classificationDuke University9/20139/2016CompletedTherapeutic index evaluation for tacrolimus and levetiracetamJohns Hopkins University9/20133/2015CompletedPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugsUniversity of Maryland9/20148/2017OngoingEffect of Therapeutic Class on Generic Drug SubstitutionsJohns Hopkins University9/20144/2017Ongoing	Post market evaluation	Characterization of epilepsy patients at-risk for adverse outcomes related to switching antiepileptic drug products	University of Maryland	9/2014	9/2017	Ongoing
Novel approaches for confounding control in observational studies of generic drugsBrigham & Women's Hospital9/20158/2018OngoingClinical practice data to aid narrow therapeutic index drug classificationDuke University9/20139/2016CompletedTherapeutic index evaluation for tacrolimus and levetiracetamJohns Hopkins University9/20133/2015CompletedPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugsUniversity of Maryland9/20148/2017OngoingEffect of Therapeutic Class on Generic Drug SubstitutionsJohns Hopkins University9/20144/2017Ongoing		A model and system based approach to efficacy and safety questions related to generic substitution	University of Florida	9/2014	8/2018	Ongoing
NTI classificationOuke University9/20139/2016CompletedNTI classificationTherapeutic index evaluation for tacrolimus and levetiracetamJohns Hopkins University9/20133/2015CompletedPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugsUniversity of Maryland9/20148/2017OngoingEffect of Therapeutic Class on Generic Drug SubstitutionsJohns Hopkins University9/20144/2017Ongoing		Novel approaches for confounding control in observational studies of generic drugs	Brigham & Women's Hospital	9/2015	8/2018	Ongoing
NTI classificationTherapeutic index evaluation for tacrolimus and levetiracetamJohns Hopkins University9/20133/2015CompletedPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugsUniversity of Maryland9/20148/2017OngoingEffect of Therapeutic Class on Generic Drug SubstitutionsJohns Hopkins University9/20144/2017Ongoing	NTI classification	Clinical practice data to aid narrow therapeutic index drug classification	Duke University	9/2013	9/2016	Completed
ClassificationPopulation pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugsUniversity of Maryland9/20148/2017OngoingEffect of Therapeutic Class on Generic Drug SubstitutionsJohns Hopkins University9/20144/2017Ongoing		Therapeutic index evaluation for tacrolimus and levetiracetam	Johns Hopkins University	9/2013	3/2015	Completed
Effect of Therapeutic Class on Generic Drug SubstitutionsJohns Hopkins University9/20144/2017Ongoing		Population pharmacokinetic and pharmacodynamic, dose-toxicity modeling and simulation for narrow therapeutic index (NTI) drugs	University of Maryland	9/2014	8/2017	Ongoing
		Effect of Therapeutic Class on Generic Drug Substitutions	Johns Hopkins University	9/2014	4/2017	Ongoing